HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption

Seewoo Lee, Garam Lee, Jung Woo Kim, Junbum Shin, Mun-Kyu Lee 40th International Conference on Machine Learning, Honolulu, Hawaii

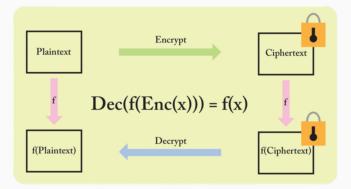
Question

How can we create / use machine learning models *without leaking private data?*

Privacy-preserving Machine Learning (PPML): prevent privacy leakage in machine learning. For example,

- Federated Learning
- Differential Privacy
- Trusted Excution Environment
- Secure Multi-Party Computation
- Homomorphic Encryption

Homomorphic Encryption (HE)



HE can perform computation on encrypted data *without having to decrypt it.*

Cheon-Kim-Kim-Song (CKKS) Scheme

- CKKS scheme supports unlimited number of SIMD operations over real and complex numbers, which is appropriate for machine learning applications
 - Addition / Multiplication
 - Rotation / Complex conjugation
 - Bootstrapping
- Lattice-based scheme, quantum-safe
- Needs to approximate non-polynomial functions

• Biggest challenge of HE: computationally expensive

Question

Can we make HE-based PPML practical?

HETAL



Figure 1: HETAL protocol

- We propose HETAL, an efficient and practical Homomorphic Encryption based TrAnsfer Learning algorithm for privacy-preserving transfer learning.
- Fine-tune classifiers with *encrypted* features extracted from pre-trained models
- Encrypted early-stopping
 - Simple communication protocol to determine whether to stop the training or not
- Encrypted fine-tuning
 - Softmax approximation on wide interval
 - Efficient encrypted matrix multiplication

- We combine **domain extension** [1] and **normalization** (via comparison [2]) to approximate softmax on a wide range.
- We prove that approximation error is bounded by an explicit constant that does not depend on the domain extension index.
- Our softmax approximation covers inputs in range [-128, 128] with estimated maximum / average errors of $0.0037 \sim 0.0224$ and $0.0022 \sim 0.0046$.
 - For input dimensions 3, 5, 7, and 10.

^[1] Cheon et al., *Efficient homomorphic evaluation on large intervals*, IEEE Transaction on Information Forensics and Security, 2022

^[2] Cheon et al., *Efficient homomorphic comparison methods with optimal complexity*, International Conference on the Theory and Application of Cryptology and Information Security, 2020

Softmax approximation

Theorem

Let $p: \mathbb{R}^c \to \mathbb{R}^c$ be an approximation of the softmax on $[-R, R]^c$ satisfying

$$\|\operatorname{Softmax}(\mathbf{x}) - p(\mathbf{x})\|_{\infty} < \epsilon.$$

Then for $\mathbf{x} \in [-\frac{1}{2}L^n R, \frac{1}{2}L^n R]^c$, we have

 $\|\operatorname{Softmax}(\mathbf{x}) - p(D_n(\operatorname{Norm}(\mathbf{x})))\|_{\infty} < \beta + \epsilon,$

where $\beta = \beta(\delta, c, r, L, d)$ is a constant that depends only on δ, c, r, L, d . Here D_n is a domain extension polynomial and Norm is a normalization map.

Encrypted matrix multiplication

- We propose DiagABT and DiagATB, which are optimized matrix multiplication algorithms of the form AB^T and A^TB.
- These algorithms are optimized with techniques including
 - off-diagonal masking
 - tiling
 - complexification
 - partial rotation

Encrypted matrix multiplication

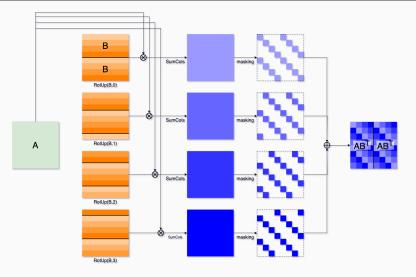


Figure 2: DiagABT algorithm for $A \in \mathbb{R}^{8 \times 8}$ and $B \in \mathbb{R}^{4 \times 8}$

Our matrix multiplication algorithms show **1.8 to 324 times** speed up compared to baseline algorithms.

(<i>a</i> , <i>b</i> , <i>c</i>)	AB^{\intercal} $(A \in \mathbb{R}^{a imes b}, B \in \mathbb{R}^{c imes b})$					$A^{\intercal}B\;(A\in\mathbb{R}^{a imes c},B\in\mathbb{R}^{a imes b})$				
	(Jin et al.)*	$ColMajor^{\dagger}$	DiagABT	Spee	edup	(Jin et al.)*	$RowMajor^\dagger$	DiagATB	Speed	dup
(128, 128, 4)	0.8192	0.1104	0.0601	13.63	1.84	10.0352	0.1171	0.0415	241.81	2.82
(256, 256, 8)	3.2768	0.3203	0.1211	27.06	2.64	40.1408	0.3167	0.1239	323.98	2.56
(512, 769, 4)	4.9216	0.7609	0.1223	40.24	6.22	60.2896	0.7176	0.3343	180.35	2.15
(1024,769,8)	9.8432	3.0428	0.3710	26.53	8.20	120.5792	2.8546	1.2558	96.02	2.27
(2048, 769, 16)	19.6864	12.6251	1.2376	15.91	10.20	241.1584	11.8220	4.9970	48.26	2.37

 Table 1: Comparison with baseline matrix multiplication algorithms.

^{*} Jin et al., Secure transfer learning for machine fault diagnosis under different operating conditions, International Conference on Provable Security, 2020

[†]Crockett, A low-depth homomorphic circuit for logistic regression model training, Workshop on Encrypted Computing & Applied Homomorphic Cryptography, 2020

Results

With CryptoLab's HEaaN library and a single NVIDIA Ampere A40 GPU, we fine-tune classifiers with encrypted features **in an hour** with **at most 0.51% accuracy drop**.

		encrypted		not encrypted		
dataset	Rur	ning time	ACC (a)	ACC (b)	ACC loss ((b) - (a))	
	Total (s)	Time / Iter (s)	//cc (u)	//cc (b)		
MNIST	3442.29	9.46	96.73%	97.24%	0.51%	
CIFAR-10	3114.30	15.72	96.57%	96.62%	0.05%	
Face Mask Detection	566.72	4.29	95.46%	95.46%	0.00%	
DermaMNIST	1136.99	7.06	76.06%	76.01%	-0.05%	
SNIPS	1264.27	6.95	95.00%	94.43%	-0.57%	

 Table 2: Transfer learning results on 5 benchmark datasets.

- We present an efficient HE-based transfer learning algorithm called HETAL.
- Efficiency of HETAL is based on two main components:
 - Highly precise softmax approximation algorithm with wide domain of approximation;
 - Efficient encrypted matrix multiplication algorithms, DiagABT and DiagATB.
- We trained classifiers with encrypted features extracted from five real-world datasets via pre-trained transformers in an hour.

