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Introduction



The era of Artificial Intelligence

2



But...
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How to solve privacy issues in AI?

Privacy-preserving Machine Learning (PPML): prevent privacy

leakage in machine learning. For example,

• Federated Learning

• Differential Privacy

• Encrypted computation

• Secure Multi-party Computation

• Homomorphic Encryption
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Homomorphic Encryption

Dec(Enc(x) + Enc(y)) = x + y

Dec(Enc(x)× Enc(y)) = x × y

We can perform computation on encrypted data without having to

decrypt it.
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Privacy-preserving machine learning and HE

Image from Openmined blog, encrypted inference with HE

6



Previous works

• Several ML algorithms (logistic regression, SVM, decision

tree, neural network) are implemented using HE.

• Biggest issue of HE: Too Slow
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Our contributions

• We propose HETAL, an efficient Homomorphic Encryption

based Transfer Learning algorithm for privacy-preserving TL.

HETAL is the first practical scheme that strictly provides

HE-based encrypted training.

• We implemented and evaluated HETAL using five well-known

benchmark datasets (MNIST, CIFAR-10, Face Mask

Detection, DermaMNIST and SNIPS), using two pre-trained

models (ViT and MPNet). HETAL took less than an hour for

training on all datasets, with at most 0.5% accuracy drop.
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Our contributions

• We propose a new softmax approximation algorithm, which

covers a significantly wider range than the previous works

(from [−8, 8] to [−128, 128]) with high precision.

• We also propose optimized matrix multiplication algorithms,

DiagABT and DiagATB, that compute matrix multiplications

of the form AB⊺ and A⊺B for encrypted matrices A and B.

Our proposed algorithms are more efficient in both memory

and computation than previous algorithms [1, 2] and show a

performance improvement of 1.8 to 323 times.
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Preliminaries



Transfer learning
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Transfer learning

• Pre-train (large) models on a large dataset (e.g. ImageNet,

Wikipedia, . . . ) and fine-tune on target datasets

• Computer Vision: ResNet, ViT, . . .

• NLP: GPT-(1,2,3,3.5,4), BERT, . . .

• Audio & Speech: Wave2Vec, HuBERT, . . .
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Approaches for PPML

Approach Pros Cons

FL

• Enables training on decentralized data

• Allows for continuous learning

on live data

• Privacy can be leaked from

model updates

• May introduce bias due to

non-i.i.d. data distribution

DP
• Provides strong mathematical

guarantees on individual privacy

• May introduce significant noise,

impacting model accuracy

• Requires careful parameter tuning

SMPC
• Computation over encrypted data

• Less computational overhead than HE
• High communication cost

HE
• Quantum-safe

• No communication is needed
• High computational cost
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Homomorphic Encryption (HE)

• Form of encryption that one can perform computation over

ciphertexts.

• Based on the hardness of (R)LWE problems, which is widely
believed to be unbreakable even with quantum computers.

• Solve system of linear equations modulo large numbers, but

with errors. Ax = b + e.

• Solution for (R)LWE problems ⇒ quantum algorithm for

lattice problesm like GapSVP or SIVP (Regev [3],

Lyubashevsky-Peikert-Regev [4])
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Homomorphic Encryption (HE)

• Partial Homomorphic Encryption : only certain operation

(addition or multiplication, but not both) is available.

• Leveled Homomorphic Encryption: evaluation of arbitrary

circuits of bounded depth

• Fully Homomorphic Encryption (FHE): allows evaluation of

arbitrary circuits of unbounded depth.

• Many HE schemes exist: BGV/BFV, FHEW/TFHE, CKKS
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Cheon-Kim-Kim-Song (CKKS) scheme

(Leveled) HE scheme that supports approximate computation over

complex numbers. It can be a FHE scheme with (approximate)

bootstrapping [5, 6].

Plaintexts are vectors of complex numbers1, and following

operations are available in CKKS scheme:

• Addition

• Hadamard multiplication: element-wise multiplication

• Rotation / Complex conjugation

• Bootstrapping: refresh noise of ciphertexts and enable fully

homomorphic encryption. Most costly operation among all.

1To be precise, messages are.
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HETAL



Threat model

• We assume an AutoML-like service, in which a client (data

owner) can outsource model training to a server.

• We assume that the server and client can share a pre-trained

generic model as a feature extractor. During the training task,

the client extracts features from its private data using the

feature extractor and sends the HE-encrypted features to the

server. The server performs fine-tuning for TL on the

ciphertext domain and produces an encrypted model.
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Threat model

• We assume that the server is honest-but-curious (HBC),

where an HBC adversary is a legitimate participant in a

communication protocol who will not deviate from the defined

protocol but will attempt to learn all possible information

from legitimately received messages.

• Note that HE provides a good defense to protect the data

against an HBC server because the server performs

computation over encrypted data without knowing the

decryption key.
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Reconstruct data from features

Extracted features may contain significant information about the

original raw data, and we can even reconstruct it from features.

For example,

• Reconstruct facial image from CNN-based features [7, 8]

• Use GAN to reconstruct facial image [9]

• Reconstruct sentences from SentenceBERT embeddings [10]
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HETAL
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HETAL

• Feature extraction is done on the client wide with pre-trained

model, which is assumed to be publicly available.

• Fine-tuning is done on the server side with encrypted features.

• Encrypted early-stopping: since it is hard to know when to

stop the training, we add simple client-server communication

protocol to determine whether to stop the training or not.
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Encrypted early-stopping

1 Client send encrypted features of validation data.

2 Server computes encrypted logit and send it back to the client.

3 Client decrypts the logit and compute loss using it.

4 Compare with previous validation losses and determine

whether to stop or not, and send a signal to the server.

• The signal does not seem to be useful for the server to recover

the client’s private data
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Encrypted fine-tuning

Main components of the encrypted fine-tuning are

• Softmax approximation

• Matrix multiplication
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Softmax approximation

We need to compute softmax for fine-tuning a classification layer

for multi-class classification. Since it is not a polynomial, we need

a polynomial approximation of it.

First try: approximate exponential and inverse function separately,

and combine them.
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Softmax approximation - exponential

We first approximate exponential function by

exp(x) ≈ (g(x/2d))2
d
=: AExpg ,d(x)

where g(x) is a minimax approximation of exp(x) on a given

interval, and d is a domain extension order.
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Softmax approximation - inverse

After that, we approximate inverse function via Goldschmidt

algorithm. For 0 < x < 2, we have

1

x
=

1

1− (1− x)
=

∞∏
m=0

(1 + (1− x)2
m
)

so we can approximate 1/x as

1

x
=

1

R

1

x/R
≈ 1

R

n∏
m=0

(
1 +

(
1− x

R

)2m
)

=: AInvR,n(x)

for suitable choice of R and N, where 0 < x < 2R. This can be

computed recursively.
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Softmax approximation

Combining these, we get an approximation

Softmax(x1, . . . , xc) ≈ AInvR,n(Z )·(AExpg ,d(x1), · · · ,AExpg ,d(xc))

where Z =
∑c

j=1AExpg ,d(xj). We choose

• g(x) be a degree 8 approximation on [−1, 1]

• d = 3

• R = 100

• n = 20

and it gives an approximation with max error 1.4× 10−6 on [−8, 8]

(c = 10).

We are done.

NO!
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Issues

The approximation range [−8, 8] is not enough for training.

0 50 100 150 200 250 300 350
−64

−32

−8
8

32

64

128
MNIST
CIFAR-10

Facial Mask Detection
DermaMNIST

SNIPS

Figure 1: Maximum and minimum value of input of softmax at each

step (minibatch) for each dataset.

We need to make the domain of approximation larger.
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Solution: domain extension

Cheon et al. [11] proposed domain extension, which can enlarge

the domain of approximation exponentially for sigmoid-like

functions.

Idea: Approximate clipping function (as an iterated composition of

low-degree polynomials).

−60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60
−10

−5

0

5

10
real

approx
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Solution: domain extension

The original work is for univariate functions, and we can apply it

element-wise to extend the domain of approximation.

ASoftmax(DEF(x1), . . . ,DEF(xc))

We are done.

NO!!
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Solution: domain extension

This still gives large error. Here’s an example:

Assume that we have an approximation of a 3-variable softmax on

a 3-dimensional box [−8, 8]3, and an input is given by (8, 10, 13).

• True output = Softmax(8, 10, 13) = (0.006, 0.047, 0.946).

• This approach ≈ Softmax(DEF8(8, 10, 13)) =

Softmax(8, 8, 8) = (0.333, 0.333, 0.333)
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Solution: domain extension + normalization

Before we apply domain extension, we first apply normalization:

subtract maximum value of input from all. The output is the same:

Softmax(x1, . . . , xc) = Softmax(x1 −m, . . . , xc −m)

Max function is not a polynomial function. But we can still

approximate it with log c homomorphic comparisons [12].

We are done.

Yes, in the following sense.
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Error bound

Theorem

Let p : Rc → Rc be an approximation of the softmax on

[−R,R]c satisfying

∥Softmax(x)− p(x)∥∞ < ϵ.

Then for x ∈ [−1
2L

nR, 12L
nR]c , we have

∥Softmax(x)− p(Dn(Norm(x)))∥∞ < β + ϵ,

where β = β(δ, c , r , L, d) is a constant that depends only on

δ, c, r , L, d .

• Dn is the domain extension polynomial that approximates

clipping function DEFR(x) on [−LnR, LnR].
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Matrix multiplication

While training, we encounter the following matrix multiplications:

• Inference: P = Softmax(XW⊺),

• Backpropagation: ∇WL = 1
n (P− Y)⊺X.

Hence it is important to compute these efficiently.
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Matrix multiplication

There are two possible approaches:

1 Implement AB and transpose

2 Implement AB⊺ and A⊺B

We choose 2 because

• Existing transpose algorithm (Jiang et al. [13]) is costly and

not applicable for large matrices

• AB⊺ and A⊺B is more HE-friendly than AB
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DiagABT

Each matrix is divided into several submatrices of fixed size and

those are encoded in a row-wise manner, where we use zero

paddings if needed. For A,B ∈ Rd×d , we can compute ABT by

AB⊺ =
∑

0≤k<d

SumCols(A⊙ RotUp(B, k))⊙M(k)

where

• ⊙: element-wise multiplication

• RotUp(B, k): rotate B in upper direction by k .

• SumCols(A): summation of columns of A, where the results

are copied along all entries

• M(k): mask that extracts k-th diagonal.
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DiagABT

Rotation is the main bottleneck of this algorithm, and we apply

several optimization techniques to reduce the number of rotations,

such as

• Tiling for packing rectangular matrices

• Particularly effective in our case since number of classes is

(usually) much smaller than minibatch size or number of

features.

• Complexification

• Based on ℜ((a+ ci)(b − di)) = ab + cd (Hong et al. [14]).

• Further reduces computational costs by half.
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DiagABT

This gives: for A ∈ Ra×b and B ∈ Rc×b, we have

AB
⊺
= X + Conj(X ), where

X =
∑

0≤k<c/2

SumCols(A⊙ RotUp(Bcplx, k))⊙M
(k,c)
cplx .

• B is B tiled in vertical direction

• Bcplx = B +
√
−1RotUp(B, c/2)

• M(k,c) is an off-diagonal masking matrix with entries

M
(k,c)
i ,j =

1 j ≡ i + k (mod c)

0 otherwise

• M
(k,c)
cplx = 1

2M
(k,c) −

√
−1
2 M(k+c/2,c)
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DiagABT

Complexification is not included for simplicity 38



DiagATB

As DiagABT, we can compute A⊺B as A⊺B = X + Conj(X ) where

X =
∑

0≤k<c/2

SumRows(RotLeft(Acplx, k)⊙ B)⊙M
(−k,a)
cplx

where A is a tiling of A in the horizontal direction and

Acplx = A+
√
−1RotLeft(A, c/2).

This approach (DiagATB) is almost same as DiagABT, but there

one notable difference - there are two RotLefts, where each

consumes a multiplicative depth.2

2Note that RotUp does not consume any depth.
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DiagATB

To address this issue, we use the PRotUp that eventually

consumes B’s level instead of A’s, so we can compute A⊺B

without any additional depth consumptions.3

X =
∑

0≤k<c/2

SumRows(Lrot(Acplx, k)⊙ PRotUp(B, k))⊙M
(−k,a)
cplx

Figure 2: PRotUp(B, k)

3except when level(A) = level(B), which does not happen in our case.
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Results



Experimental setup

• HEaaN library (CryptoLab)

• CKKS scheme

• Supports bootstrapping & GPU implementation

• We take N = 216 as a cyclotomic ring dimension (single

ciphertext encrypt N/2 = 215 complex numbers) and

ciphertext modulus q ≈ 21555 which gives 128-bit security level.

• Intel Xeon Gold 6242 CPU at 2.80GHz processor

• Single NVIDIA Ampere A40 GPU

operation Add Rotate CMult Mult Bootstrap

time 0.0085ms 1.2ms 0.9ms 1.6ms 159ms
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Experimental setup

We use the following datasets for experiments.

• MNIST

• CIFAR-10

• Face Mask Detection (Larxel [15])

• DermaMNIST (Yang et al. [16])

• SNIPS (Coucke et al. [17])

We use ViT-Base for image datasets and MPNet-Base for SNIPS

dataset as feature extractors. Both models embed a data point

into a single 768-dimensional vector.
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Results

dataset

encrypted not encrypted

Running time
ACC (a) ACC (b) ACC loss ((b) - (a))

Total (s) Time / Iter (s)

MNIST 3442.29 9.46 96.73% 97.24% 0.51%

CIFAR-10 3114.30 15.72 96.57% 96.62% 0.05%

Face Mask Detection 566.72 4.29 95.46% 95.46% 0.00%

DermaMNIST 1136.99 7.06 76.06% 76.01% -0.05%

SNIPS 1264.27 6.95 95.00% 94.43% -0.57%
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Softmax approximation

We sample 400M points uniformly on [−128, 128]c , and compute

maximum errors of our approximation.4 The maximum error was

0.0037–0.0224 and the average error was 0.0022–0.0046 depending

on the input dimension.

4with input dimensions c ∈ {3, 5, 7, 10}
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Softmax approximation

We compare our softmax approximation algorithm with

• (Lee et al. [18]) Gumbel softmax trick: simply divides inputs

by certain large numbers.

• (Hong et al. [14]) Approximate exponential as

exp(x) ≈ (1 + x/2n)2
n
.

• (Jin et al. [1]) Use one-vs-each softmax [19] as an alternative

First two works use softmax for inference, and the only last one is

used for training.
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Softmax approximation

The errors of previous works are fairly large and can’t cover large

domain:

• Lee et al.: 0.89 - 0.99, covers up to [−32, 32]

• Hong et al.: 0.07 - 0.41, covers up to [−8, 8]

• Jin et al.: 0.18 - 0.80, covers up to [−4, 4]
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Matrix multiplication

We compare our DiagABT and DiagATB algorithm with

• (Jin et al. [1]) Use row-majored packing (RP),

column-majored packing (CP), and replicated packing (REP).

• (Crockett [2]) ColMajor and RowMajor extract and replicate

rows/columns and view them as matrix-vector/vector-matrix

multiplications.
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Matrix multiplication

(a, b, c)
AB⊺ (A ∈ Ra×b,B ∈ Rc×b) A⊺B (A ∈ Ra×c ,B ∈ Ra×b)

[1]∗ ColMajor† DiagABT Speedup [1]∗ RowMajor† DiagATB Speedup

(128, 128, 4) 0.8192 0.1104 0.0601 13.63 1.84 10.0352 0.1171 0.0415 241.81 2.82

(256, 256, 8) 3.2768 0.3203 0.1211 27.06 2.64 40.1408 0.3167 0.1239 323.98 2.56

(512, 769, 4) 4.9216 0.7609 0.1223 40.24 6.22 60.2896 0.7176 0.3343 180.35 2.15

(1024, 769, 8) 9.8432 3.0428 0.3710 26.53 8.20 120.5792 2.8546 1.2558 96.02 2.27

(2048, 769, 16) 19.6864 12.6251 1.2376 15.91 10.20 241.1584 11.8220 4.9970 48.26 2.37

• For [1], we report estimated running times due to memory

issues.

• We get performance improvementes of 1.8 to 323 times.
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Matrix multiplication

(a, b, c)
AB⊺ (A ∈ Ra×b,B ∈ Rc×b) A⊺B (A ∈ Ra×c ,B ∈ Ra×b)

[1]∗ ColMajor DiagABT [1]∗ RowMajor DiagATB

(128, 128, 4)

0 4 0 0 4 2

512 4 2 512 4 0

0 63 34 7680 63 18

(256, 256, 8)

0 16 0 0 8 4

2048 16 8 2048 16 0

0 191 64 30720 191 72

(512, 769, 4)

0 52 0 0 4 2

3076 52 26 3076 52 0

0 495 50 46140 495 238

(1024, 769, 8)

0 200 0 0 8 4

6152 200 100 6152 200 0

0 2047 140 92280 2047 1008

(2048, 769, 16)

0 784 0 0 16 8

12304 784 392 12304 784 0

0 8703 456 184560 8703 4328

• Each row represents the number of CMult, Mult, and Rot.
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Future works

• Apply to other domains, e.g. speech recognition or finance.

• Use softmax approximation for other purposes, such as

encrypted inference of transformers. Same for matrix

multiplication.

• Low-level optimization, especially for matrix multiplications.

• Can we fine-tune models on encrypted data for purposes other

than classification? Encrypted fine-tuning of LLMs?
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You can find packages and benchmarking codes in

https://github.com/CryptoLabInc/HETAL

Thank you!
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