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Goal

• We develop simple but surprisingly useful tools to study

(completely) positive quasimodular forms.

• Using the theory, we give algebraic proofs of Viazovska and

Cohn–Miller–Kumar–Radchenko–Viazovska’s modular form

inequalities for the E8 and Leech lattice packing in dimensions

8 and 24.

• We also prove a conjecture of Kaneko and Koike for the

extremal forms in the case of depth 1.
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Sphere packing

Question

For given d ≥ 1, find an optimal sphere (in fact, ball) packing of

Rd and its density ∆d .

3



Sphere packing

Before 2016:

• d = 1. ∆1 = 1.

• d = 2. (Thue 1910) ∆2 =
π

2
√
3
(hexagonal (A2) packing).

• d = 3. (Kepler conjecture 1611, Hales 2005) ∆3 =
π

3
√
2

(Cannon ball packing). Tons of computer calculations,

formally verified in 2014 using Isabelle/HOL light.

• (Korkine–Zolotareff, Blichfeldt, Cohn–Kumar)

D4,D5,D6,E7,E8, and Leech lattice packings are optimal

among lattice packings for d = 4, 5, 6, 7, 8, 24 respectively.
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Sphere packing, d = 8

Theorem (Viazovska, 2016 π-day on arXiv)

E8 lattice packing is optimal with ∆8 =
π4

384 .

E8 =

{
(xi ) ∈ Z8 ∪

(
Z+

1

2

)8

:
8∑

i=1

xi ≡ 0 (mod 2)

}
⊂ R8

5



6



Sphere packing, d = 24

Theorem (Cohn–Kumar–Miller–Radchenko–Viazovska,

March 21st 2016 on arXiv)

Leech lattice packing is optimal with ∆24 =
π12

12! .

Unique even unimodular lattice with nonzero minimial length

λ(Λ24) = 2. Can be constructed by the binary Golay code,

Lorentzian lattice II25,1, etc.
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LP bound

How? We have a Linear programming bound for sphere packing:

Theorem (Cohn–Elkies, 2003)

Let r > 0. Assume that there exists a nice function f : Rd → R
satisfying

• f (0) = f̂ (0) > 0,

• f (x) ≤ 0 for all ∥x∥ ≥ r,

• f̂ (y) ≥ 0 for all y ∈ Rd .

Then

∆d ≤ vol(Bd
r/2) =

( r
2

)d πd/2

(d/2)!
.
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Hunt for magic function

In other words, existence of a “magic function” gives an upper

bound for the density.

Based on their numerical experiments, Cohn and Elkies

conjectured that the optimal sphere packing in dimensions

d = 2, 8, 24 can be achieved by a magic function.

It may look like this (for d = 8, radial):
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Viazovska’s construction

Viazovska (and colleagues) constructed the magic functions for

d = 8, 24, using modular forms.

Decompose f into Fourier eigenfunctions f = f+ + f−, where

f̂+ = f+ and f̂− = −f−. Viazovska write them as

f±(x) = sin2
(
π∥x∥2

2

)∫ ∞

0
φ±(t)e

−π∥x∥2tdt,

where sin2 factor is included to enforce desired roots. Then f±

being Fourier eigenfunctions correspond to φ± being

“(quasi)modular forms”. Now the linear constraints (inequalities)

on f and f̂ reduces to the modular inequalities

φ+(t) + φ−(t) < 0,

φ+(t)− φ−(t) > 0.
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d = 8, modular form inequalities

For d = 8, φ±(t) = t2ψ±(i/t), ψ+ = − F
∆ , ψ− = − 18

π2
G
∆ where

F = (E2E4 − E6)
2

G = H3
2 (2H

2
2 + 5H2H4 + 5H2

4 ),

and H2 = Θ4
2 and H4 = Θ4

4. Then the inequality reduces to

F (it) +
18

π2
G (it) > 0,

F (it)− 18

π2
G (it) < 0.
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d = 24, modular form inequalities

For d = 24 we have the following three inequalities:

F (it) +
432

π2
G (it) ≥ 0,

F (it)− 432

π2
G (it) ≤ 0.

t10
(
− F (i/t)

∆(i/t)2
+

432

π2
G (i/t)

∆(i/t)2

)
≥ 725760

π
e2πt

(
t − 10

3π

)

(t ≥ 1 enough for the last one) where

F = 49E 2
2E

3
4 − 25E 2

2E
2
6 − 48E2E

2
4E6 − 25E 4

4 + 49E4E
2
6 ,

G = H5
2 (2H

2
2 + 7H2H4 + 7H2

4 ).
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Some observations on the inequalities

For d = 8, the first inequality is “easy”: we have F (it) > 0 and

G (it) > 0 for all t > 0. But the second inequality is “hard”: we

need to compare modular forms of different weights (12 and 10).

For d = 24, even the first inequality is not so trivial: F (it) > 0 is

not obvious. Second one is hard, and the last one is harder.
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Previous proofs

Viazovska and CKMRV’s original proofs use bounds of Fourier

coefficients of the form

|c(n)| ≤ C1e
C2π

√
n

(follows from the Hardy–Ramanujan formula) and reduce

inequalities to finite calculations + interval arithmetic.

Dan Romik (2023) gave an alternative and much simpler proof for

d = 8 that does not use any of interval arithmetic. But it still

requires a “calculator” to check inequalities like

e3π
9Γ(1/4)16

8192π12
< 20480.

Also, 0 < t < 1 and t ≥ 1 cases are treated separately.
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Algebraic proof

Question

Can we prove these algebraically?
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(Completely) positive quasimodular forms

To (re-)prove these modular form inequalities, we develop some

theory of (completely) positive quasimodular forms.
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(Completely) positive quasimodular forms

Definition

Let Γ ⊆ SL2(Z). We call F ∈ QMs
w (Γ) a positive

quasimodular form if

F (it) ≥ 0

for all t > 0. We denote QMs,+
w (Γ) for the set of positive

quasimodular forms.

We call F ∈ QMs
w (Γ) a completely positive quasimodular

form if it has nonnegative q-coefficients at ∞. We denote

QMs,++
w (Γ) for the set of completely positive quasimodular

forms.
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(Completely) positive quasimodular forms

We have QMs,++
w ⊆ QMs,+

w ⊆ QMs
w , and the two sets form a

convex cone in QMs
w .

The inclusion is strict in general:

∆(q) = q
∏

n≥1(1− qn)24 = q − 24q2 + · · · is positive but not

completely positive.
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Positive forms and derivatives

“Easy” facts, one-line proofs:

Theorem (L.)

1 Anti-derivative preserves positivity.

2 Derivative preserves complete positivity.

3 Serre derivative preserves complete positivity.

“Nontrivial” fact1 (that we won’t use):

Theorem (L.)

F is completely positive if and only if all its derivatives are

positive.

1almost directly follows from Bernstein’s theorem
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Positive forms and Serre derivatives

“Interesting” fact that we will use:

Theorem (L.)

Let F =
∑

n≥n0
anq

n ∈ QMs
w be a quasimodular form of real

coefficients with an0 > 0. If ∂kF ∈ QMs+1,+
w+2 for some k, then

F ∈ QMs,+
w .

In other words, anti-Serre-derivative preserves positivity.

Proof.

d

dt

(
F (it)

∆(it)k/12

)
= (−2π)

(∂kF )(it)

∆(it)k/6
< 0.
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Extremal forms

Examples?

Definition (Kaneko–Koike)

For a given weight w and depth s, extremal quasimodular form

of weight w and depth s, Xw ,s , is a quasimodular form of

largest possible vanishing order at the cusp. More precisely, Xw ,s

admits a q-expansion

Xw ,s =
∑
n≥m

anq
n

where m = dimCQMs
w − 1 and am ̸= 0.
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Examples

X6,1 =
E2E4 − E6

720
= q + 18q2 + 84q3 + 292q4 + 630q5 + · · ·

X8,1 =
−E2E6 + E 2

4

1008
= q + 66q2 + 732q3 + 4228q4 + 15630q5 + · · ·

X4,2 =
−E 2

2 + E4

288
= q + 6q2 + 12q3 + 28q4 + 30q5 + · · ·

X8,2 =
−7E 2

2E4 + 2E2E6 + 5E 2
4

362880
= q2 + 16q3 + 102q4 + 416q5 + · · ·

X6,3 =
5E 3

2 − 3E2E4 − 2E6

51840
= q2 + 8q3 + 30q4 + 80q5 + · · ·
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Theorems and conjectures

For each 1 ≤ s ≤ 4:

• Theorem (Pellarin) extremal forms of weight w and depth s

exists and unique up to a constant.

• Theorem (Kaneko–Koike, Grabner) extremal forms satisfy

recurrence relations and differential equations.

• Conjecture (Kaneko–Koike) extremal forms have nonnegative
q-coefficients (i.e. completely positive).

• Theorem (Grabner) Conjecture is true for all but finitely many

coefficients.
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Kaneko–Koike conjecture for s = 1

Theorem (L.)

Conjecture is true for depth 1 extremal forms.

Proof.

For w ≡ 0 (mod 6) and w ≥ 12, we can prove

X ′
w ,1 =

5w

72
X6,1Xw−4,1 +

7w

72
X8,1Xw−6,1

X ′
w+2,1 =

5w

72
X6,1Xw−2,1 +

7w

12
X8,1Xw−4,1

X ′
w+4,1 = 240X6,1Xw ,1 +

7w

72
X8,1Xw−2,1 +

5w

72
X10,1Xw−4,1

and these imply nonnegativity of q-coefficients.

24



Kaneko–Koike conjecture for s = 1

Theorem (L.)

Conjecture is true for depth 1 extremal forms.

Proof.

For w ≡ 0 (mod 6) and w ≥ 12, we can prove

X ′
w ,1 =

5w

72
X6,1Xw−4,1 +

7w

72
X8,1Xw−6,1

X ′
w+2,1 =

5w

72
X6,1Xw−2,1 +

7w

12
X8,1Xw−4,1

X ′
w+4,1 = 240X6,1Xw ,1 +

7w

72
X8,1Xw−2,1 +

5w

72
X10,1Xw−4,1

and these imply nonnegativity of q-coefficients.

24



Kaneko–Koike conjecture for s = 2

We also have similar identities proving complete positivity of the

depth 2 extremal forms of weight w ≤ 14:

X4,2 =
1

24
(−E ′

2)

X ′
8,2 = 2X4,2X6,1

X ′
10,2 =

8

9
X4,2X8,1 +

10

9
X 2
6,1

X ′
12,2 = 3X6,1X8,2

X ′
14,2 = 3X4,2X12,1

but we don’t have ones for general w yet.

25



d = 8, new proof

Let’s get back to the modular form inequality for d = 8 case. The

second (hard) inequality was

F (it) <
18

π2
G (it)

where

F = (E2E4 − E6)
2

G = H3
2 (2H

2
2 + 5H2H4 + 5H2

4 ).

Let’s rewrite it as
F (it)

G (it)
<

18

π2

which is still inhomogenous. How the function on the left hand

side looks like? Since I cannot plot it myself, let’s ask Sage...
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d = 8, homogenization

27



d = 8, homogenization

This graph tells us what we should try:

Proposition

lim
t→0+

F (it)

G (it)
=

18

π2
.

Proposition

The function

t 7→ F (it)

G (it)

is decreasing in t.

and both turned out to be true.
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d = 8: limit

Proof of the limit.

We have

lim
t→0+

F (it)

G (it)
= lim

t→∞

F (i/t)

G (i/t)

and F and G satisfy the following functional equations:

F

(
i

t

)
= t12F (it)− 12t11

π
(E2(it)E4(it)− E6(it))E4(it) +

36t10

π2
E4(it)

2,

G

(
i

t

)
= t10H4(it)

3(2H4(it)
2 + 5H4(it)H2(it) + 5H2(it)

2).

The red terms are cusp forms, and the orange terms converges

to 1. Hence the limit is 36/π2

2 = 18
π2 .
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d = 8: monotonicity

Proof of the monotonicity.

It is enough to show that

L1,0 = F ′G − FG ′ = (∂10F )G − F (∂10G ) is positive. We have

∂210F − 5

6
E4F = 172800∆X4,2 > 0,

∂210G − 5

6
E4G = −640∆H2 < 0

which gives

∂22L1,0 = (∂210F )G − F (∂210G ) = ∆(172800X4,2G + 640H2F ) > 0

and so L1,0 > 0.

Easy to be checked by Sage (or less easily by hands).
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d = 24: easy and hard inequalities

d = 24 case is similar. For the “easy” inequality, it is enough to

show that F > 0. This follows from the surprising identity

∂14F = 6706022400X6,1X12,1 ∈ QM2,++
18 .

The hard inequality inequality can be proved in the same way as

d = 8 case. We have

∂214F − 14

9
E4F = c∆X8,2,

∂214G − 14

9
E4G = 0

for c = 548674560.
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d = 24: harder inequality

The last inequality

t10
(
− F (i/t)

∆(i/t)2
+

432

π2
G (i/t)

∆(i/t)2

)
≥ 725760

π
e2πt

(
t − 10

3π

)
is more complicated, but we can prove it as follows:

• ∆(it) < e−2πt for all t > 0, by the product expansion of ∆.

Then we can replace e2πt by 1/∆(it) = t12/∆(i/t).2

• The reduced inequality follows from monotonicity of it again,

which is equivalent to (for 0 < t < 3π
10 )

L1,0(it)− 725760∆(it)
[
(∂12G )(it)

(
1

πt3
− 10

3π2t2

)
− G (it)

(
3

2π2t4
− 10

3π3t3

)]
> 0

2when t ≥ 10
3π
. 0 < t ≤ 10

3π
follows from the “hard” inequality.
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10 )

L1,0(it)− 725760∆(it)
[
(∂12G )(it)

(
1

πt3
− 10

3π2t2

)
− G (it)

(
3

2π2t4
− 10

3π3t3

)]
> 0

2when t ≥ 10
3π
. 0 < t ≤ 10

3π
follows from the “hard” inequality.
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d = 24: harder inequality

The last inequality

t10
(
− F (i/t)

∆(i/t)2
+

432

π2
G (i/t)

∆(i/t)2

)
≥ 725760

π
e2πt

(
t − 10

3π

)
is more complicated, but we can prove it as follows:

• ∆(it) < e−2πt for all t > 0, by the product expansion of ∆.

Then we can replace e2πt by 1/∆(it) = t12/∆(i/t).2

• The reduced inequality follows from monotonicity of it again,

which is equivalent to (for 0 < t < 3π
10 )

L1,0(it)− 725760∆(it)
[
(∂12G )(it)

(
1

πt3
− 10

3π2t2

)
− G (it)

(
3

2π2t4
− 10

3π3t3

)]
> 0

2when t ≥ 10
3π
. 0 < t ≤ 10

3π
follows from the “hard” inequality.
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d = 24: harder inequality

• Use Serre derivative trick again; Serre derivative of the above

function factors nicely and it reduces to the positivity of

7560X8,2(it)− 37E4(it)−E2(it)2

24

(
1

πt3
− 10

3π2t2

)
− E2(it)

(
3

4π2t4
− 5

3π3t3

)
+
(

3
π3t5

− 5
π4t4

)
.

• If we denote this as h(t), then t−8h(1/t) can be written as

7560X8,2(it) +
1

πt

[(
3

10
− 1

πt

)
J1(it) +

3

40
J2(it) +

7

4
J3(it)

]
with

J1 =
5

36
E 2
2 +

1

9
E4−

1

4
E2, J2 = E2−E6, J3 = E2E4−

1

10
E6−

9

10
E4

which are all positive (for t ≥ 10
3π ).
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.
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3

40
J2(it) +
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4
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10
E6−

9
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E4

which are all positive (for t ≥ 10
3π ).
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Future works

• What are the (completely) positive forms?

• Possible applications in other LP problems?

• Dual LP, uncertainty principle, etc.

• Any results that are “uniform” in dimensions?

• Make a formalization of the proof (e.g. in Lean) easier?

• (WIP)
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Paper: arxiv.org/abs/2406.14659

Code: github.com/seewoo5/posqmf

Thank you!
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...Do I have more time?
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Some possible explanations of mysterious numbers in identities

For d = 24, why we take k = 14 to prove F (it) > 0 using

∂14F (it) > 0?

• In general, we have the following theorem: if F has weight w

and depth s, then ∂w−sF has weight w + 2 and depth ≤ s.

Our F has weight 16 and depth 2, so k = 16− 2 is something

special that we can try to see.
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Some possible explanations of mysterious numbers in identities

Where the 5/6 of

∂210F − 5

6
E4F = 172800∆X4,2 > 0,

∂210G − 5

6
E4G = −640∆H2 < 0

comes from?

• The differential operator ∂2k −
k(k+2)
144 E4 first appears in the

paper “Supersingular j-invariants, hypergeometric series, and

Atkin’s orthogonal polynomials” by Kaneko–Zagier. Any

possible conceptual connections/explanations?
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Proof of Kaneko–Koike conjecture for s = 1

The new recurrence relations

X ′
w ,1 =

5w

72
X6,1Xw−4,1 +

7w

72
X8,1Xw−6,1

X ′
w+2,1 =

5w

72
X6,1Xw−2,1 +

7w

12
X8,1Xw−4,1

X ′
w+4,1 = 240X6,1Xw ,1 +

7w

72
X8,1Xw−2,1 +

5w

72
X10,1Xw−4,1

are conjectured based on Sage computations: If you try to express

LHS with linear combination of the terms in RHS, then you get

very simple positive rational coefficients, where the general formula

can be easily guessed.
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More comments on future works

• What are the (completely) positive forms?

• Counting functions? (Kaneko–Zagier) d-th coefficient of X6,3

counts the number of simply ramified coverings of genus 2 and

degree d of an elliptic curve over C.
• Geometric meaning? (Movasati) Quasimodular forms can be

interpreted as sections of jet bundles on modular curves.

• What are the “generators” of QM+
w ,s and QM++

w ,s?

• Positivstellensatz of quasimodular forms?

• Conjecture (L., I don’t believe) F is completely positive if and

only if F (r) can be expressed in terms of extremal forms for

some r .
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More comments on future works

• Possible applications in other LP problems?

• (Cohn–Triantafillou) Dual LP

• (Brougain–Clozel–Kahane, Cohn–Gonçalves) Uncertainty

principle

• Any results that are “uniform” in dimensions?

• Feigenbaum–Grabner–Hardin, Eigenfunctions of the Fourier

Transform with specified zeros

• Theorem (L.) Kaneko–Koike conjecture for s = 2 implies

positivity of FGH’s “(−1)d/4” family of modular forms.

41



More comments on future works

• Make a formalization of the proof (e.g. in Lean) easier?

• Leading by Sidharth Hariharan (for their master’s thesis!) and

including Chris Birkbeck, Gareth Ma, Maryna Viazovska, ...

• Blueprint:

• 1 year for completion?
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