Algebraic proof of modular form inequalities for optimal sphere packings

Seewoo Lee, UC Berkeley

September 9, 2024. Building Bridges 6th EU/US Workshop on Automorphic Forms and Related Topics

- We develop simple but surprisingly useful tools to study *(completely) positive quasimodular forms.*
- Using the theory, we give algebraic proofs of Viazovska and Cohn-Miller-Kumar-Radchenko-Viazovska's modular form inequalities for the E₈ and Leech lattice packing in dimensions 8 and 24.
- We also prove a conjecture of Kaneko and Koike for the extremal forms in the case of depth 1.

Question

For given $d \ge 1$, find an optimal sphere (in fact, ball) packing of \mathbb{R}^d and its density Δ_d .

Before 2016:

- d = 1. $\Delta_1 = 1$.
- d = 2. (Thue 1910) $\Delta_2 = \frac{\pi}{2\sqrt{3}}$ (hexagonal (A_2) packing).
- d = 3. (Kepler conjecture 1611, Hales 2005) $\Delta_3 = \frac{\pi}{3\sqrt{2}}$ (Cannon ball packing). Tons of computer calculations, formally verified in 2014 using Isabelle/HOL light.
- (Korkine–Zolotareff, Blichfeldt, Cohn–Kumar)
 D₄, D₅, D₆, E₇, E₈, and Leech lattice packings are optimal among *lattice* packings for d = 4, 5, 6, 7, 8, 24 respectively.

Theorem (Viazovska, 2016 π -day on arXiv)

 E_8 lattice packing is optimal with $\Delta_8 = \frac{\pi^4}{384}$.

$$E_8 = \left\{ (x_i) \in \mathbb{Z}^8 \cup \left(\mathbb{Z} + \frac{1}{2}\right)^8 : \sum_{i=1}^8 x_i \equiv 0 \, (\text{mod } 2) \right\} \subset \mathbb{R}^8$$

Theorem (Cohn–Kumar–Miller–Radchenko–Viazovska, March 21st 2016 on arXiv)

Leech lattice packing is optimal with $\Delta_{24} = \frac{\pi^{12}}{12!}$.

Unique even unimodular lattice with nonzero minimial length $\lambda(\Lambda_{24}) = 2$. Can be constructed by the binary Golay code, Lorentzian lattice $II_{25,1}$, etc.

LP bound

How? We have a Linear programming bound for sphere packing:

Theorem (Cohn-Elkies, 2003)

Let r > 0. Assume that there exists a nice function $f : \mathbb{R}^d \to \mathbb{R}$ satisfying

- $f(0) = \hat{f}(0) > 0$,
- $f(x) \leq 0$ for all $||x|| \geq \mathbf{r}$,
- $\widehat{f}(y) \ge 0$ for all $y \in \mathbb{R}^d$.

Then

$$\Delta_d \leq \operatorname{vol}(B^d_{r/2}) = \left(rac{r}{2}
ight)^d rac{\pi^{d/2}}{(d/2)!}.$$

Hunt for magic function

In other words, existence of a "magic function" gives an upper bound for the density.

Hunt for magic function

In other words, existence of a "magic function" gives an upper bound for the density.

Based on their numerical experiments, Cohn and Elkies conjectured that the optimal sphere packing in dimensions d = 2, 8, 24 can be achieved by a magic function.

Hunt for magic function

In other words, existence of a "magic function" gives an upper bound for the density.

Based on their numerical experiments, Cohn and Elkies conjectured that the optimal sphere packing in dimensions d = 2, 8, 24 can be achieved by a magic function.

It may look like this (for d = 8, radial):

Viazovska's construction

Viazovska (and colleagues) constructed the magic functions for d = 8,24, using *modular forms*.

Viazovska's construction

Viazovska (and colleagues) constructed the magic functions for d = 8,24, using *modular forms*.

Decompose f into Fourier eigenfunctions $f = f_+ + f_-$, where $\hat{f_+} = f_+$ and $\hat{f_-} = -f_-$. Viazovska write them as

$$f_{\pm}(x) = \sin^2\left(\frac{\pi \|x\|^2}{2}\right) \int_0^\infty \varphi_{\pm}(t) e^{-\pi \|x\|^2 t} \mathrm{d}t,$$

where sin² factor is included to enforce desired roots. Then f_{\pm} being Fourier eigenfunctions correspond to φ_{\pm} being "(quasi)modular forms".

Viazovska's construction

Viazovska (and colleagues) constructed the magic functions for d = 8,24, using *modular forms*.

Decompose f into Fourier eigenfunctions $f = f_+ + f_-$, where $\hat{f_+} = f_+$ and $\hat{f_-} = -f_-$. Viazovska write them as

$$f_{\pm}(x) = \sin^2\left(rac{\pi \|x\|^2}{2}
ight) \int_0^\infty \varphi_{\pm}(t) e^{-\pi \|x\|^2 t} \mathrm{d}t.$$

where sin² factor is included to enforce desired roots. Then f_{\pm} being Fourier eigenfunctions correspond to φ_{\pm} being "(quasi)modular forms". Now the linear constraints (inequalities) on f and \hat{f} reduces to the modular inequalities

$$arphi_+(t)+arphi_-(t)<0, \ arphi_+(t)-arphi_-(t)>0.$$

d = 8, modular form inequalities

For
$$d = 8$$
, $\varphi_{\pm}(t) = t^2 \psi_{\pm}(i/t)$, $\psi_{+} = -\frac{F}{\Delta}$, $\psi_{-} = -\frac{18}{\pi^2} \frac{G}{\Delta}$ where

$$F = (E_2 E_4 - E_6)^2$$

$$G = H_2^3 (2H_2^2 + 5H_2H_4 + 5H_4^2),$$

and $H_2 = \Theta_2^4$ and $H_4 = \Theta_4^4$. Then the inequality reduces to

$$egin{aligned} F(it) + rac{18}{\pi^2}G(it) > 0, \ F(it) - rac{18}{\pi^2}G(it) < 0. \end{aligned}$$

d = 24, modular form inequalities

For d = 24 we have the following *three* inequalities:

$$F(it) + \frac{432}{\pi^2} G(it) \ge 0,$$

$$F(it) - \frac{432}{\pi^2} G(it) \le 0.$$

$$t^{10} \left(-\frac{F(i/t)}{\Delta(i/t)^2} + \frac{432}{\pi^2} \frac{G(i/t)}{\Delta(i/t)^2} \right) \ge \frac{725760}{\pi} e^{2\pi t} \left(t - \frac{10}{3\pi} \right)$$

 $(t \ge 1 \text{ enough for the last one})$ where

$$\begin{split} F &= 49E_2^2E_4^3 - 25E_2^2E_6^2 - 48E_2E_4^2E_6 - 25E_4^4 + 49E_4E_6^2, \\ G &= H_2^5(2H_2^2 + 7H_2H_4 + 7H_4^2). \end{split}$$

For d = 8, the first inequality is "easy": we have F(it) > 0 and G(it) > 0 for all t > 0. But the second inequality is "hard": we need to compare modular forms of different weights (12 and 10).

For d = 8, the first inequality is "easy": we have F(it) > 0 and G(it) > 0 for all t > 0. But the second inequality is "hard": we need to compare modular forms of different weights (12 and 10). For d = 24, even the first inequality is not so trivial: F(it) > 0 is not obvious. Second one is hard, and the last one is harder.

Previous proofs

Viazovska and CKMRV's original proofs use bounds of Fourier coefficients of the form

 $|c(n)| \leq C_1 e^{C_2 \pi \sqrt{n}}$

(follows from the Hardy–Ramanujan formula) and reduce inequalities to finite calculations + interval arithmetic.

Viazovska and CKMRV's original proofs use bounds of Fourier coefficients of the form

 $|c(n)| \leq C_1 e^{C_2 \pi \sqrt{n}}$

(follows from the Hardy–Ramanujan formula) and reduce inequalities to finite calculations + interval arithmetic.

Dan Romik (2023) gave an alternative and much simpler proof for d = 8 that does not use any of interval arithmetic. But it still requires a "calculator" to check inequalities like

$$e^{3\pi}rac{9\Gamma(1/4)^{16}}{8192\pi^{12}} < 20480.$$

Also, 0 < t < 1 and $t \ge 1$ cases are treated separately.

Question

Can we prove these algebraically?

To (re-)prove these modular form inequalities, we develop some theory of **(completely) positive quasimodular forms**.

(Completely) positive quasimodular forms

Definition

Let $\Gamma \subseteq SL_2(\mathbb{Z})$. We call $F \in \mathcal{QM}^s_w(\Gamma)$ a positive quasimodular form if

 $F(it) \ge 0$

for all t > 0. We denote $\mathcal{QM}^{s,+}_{w}(\Gamma)$ for the set of positive quasimodular forms.

Definition

Let $\Gamma \subseteq SL_2(\mathbb{Z})$. We call $F \in \mathcal{QM}^s_w(\Gamma)$ a positive quasimodular form if

 $F(it) \ge 0$

for all t > 0. We denote $\mathcal{QM}_{w}^{s,+}(\Gamma)$ for the set of positive quasimodular forms.

We call $F \in \mathcal{QM}^s_w(\Gamma)$ a **completely positive quasimodular** form if it has nonnegative *q*-coefficients at ∞ . We denote $\mathcal{QM}^{s,++}_w(\Gamma)$ for the set of completely positive quasimodular forms. We have $\mathcal{QM}_{w}^{s,++} \subseteq \mathcal{QM}_{w}^{s,+} \subseteq \mathcal{QM}_{w}^{s}$, and the two sets form a convex cone in \mathcal{QM}_{w}^{s} .

The inclusion is strict in general: $\Delta(q) = q \prod_{n \ge 1} (1 - q^n)^{24} = q - 24q^2 + \cdots$ is positive but not completely positive. "Easy" facts, one-line proofs:

Theorem (L.)

- Anti-derivative preserves positivity.
- Oerivative preserves complete positivity.
- Serre derivative preserves complete positivity.

"Nontrivial" fact¹ (that we won't use):

Theorem (L.)

F is completely positive if and only if all its derivatives are positive.

¹almost directly follows from Bernstein's theorem

"Interesting" fact that we will use:

Theorem (L.)

Let $F = \sum_{n \ge n_0} a_n q^n \in \mathcal{QM}_w^s$ be a quasimodular form of real coefficients with $a_{n_0} > 0$. If $\partial_k F \in \mathcal{QM}_{w+2}^{s+1,+}$ for some k, then $F \in \mathcal{QM}_w^{s,+}$.

In other words, anti-Serre-derivative preserves positivity.

"Interesting" fact that we will use:

Theorem (L.)

Let $F = \sum_{n \ge n_0} a_n q^n \in \mathcal{QM}_w^s$ be a quasimodular form of real coefficients with $a_{n_0} > 0$. If $\partial_k F \in \mathcal{QM}_{w+2}^{s+1,+}$ for some k, then $F \in \mathcal{QM}_w^{s,+}$.

In other words, anti-Serre-derivative preserves positivity.

Proof.

$$\frac{\mathsf{d}}{\mathsf{d}t}\left(\frac{F(it)}{\Delta(it)^{k/12}}\right) = (-2\pi)\frac{(\partial_k F)(it)}{\Delta(it)^{k/6}} < 0.$$

Examples?

Examples?

Definition (Kaneko-Koike)

For a given weight w and depth s, **extremal quasimodular form** of weight w and depth s, $X_{w,s}$, is a quasimodular form of *largest possible vanishing order at the cusp*. More precisely, $X_{w,s}$ admits a q-expansion

$$X_{w,s} = \sum_{n \ge m} a_n q'$$

where $m = \dim_{\mathbb{C}} \mathcal{QM}_w^s - 1$ and $a_m \neq 0$.

$$\begin{split} X_{6,1} &= \frac{E_2 E_4 - E_6}{720} = q + 18q^2 + 84q^3 + 292q^4 + 630q^5 + \cdots \\ X_{8,1} &= \frac{-E_2 E_6 + E_4^2}{1008} = q + 66q^2 + 732q^3 + 4228q^4 + 15630q^5 + \cdots \\ X_{4,2} &= \frac{-E_2^2 + E_4}{288} = q + 6q^2 + 12q^3 + 28q^4 + 30q^5 + \cdots \\ X_{8,2} &= \frac{-7E_2^2 E_4 + 2E_2 E_6 + 5E_4^2}{362880} = q^2 + 16q^3 + 102q^4 + 416q^5 + \cdots \\ X_{6,3} &= \frac{5E_2^3 - 3E_2 E_4 - 2E_6}{51840} = q^2 + 8q^3 + 30q^4 + 80q^5 + \cdots \end{split}$$

For each $1 \leq s \leq 4$:

- **Theorem** (Pellarin) extremal forms of weight *w* and depth *s* exists and unique up to a constant.
- **Theorem** (Kaneko-Koike, Grabner) extremal forms satisfy recurrence relations and differential equations.
- **Conjecture** (Kaneko–Koike) extremal forms have nonnegative *q*-coefficients (i.e. completely positive).
 - **Theorem** (Grabner) Conjecture is true *for all but finitely many coefficients*.

Kaneko–Koike conjecture for s = 1

Theorem (L.)

Conjecture is true for depth 1 extremal forms.

Kaneko–Koike conjecture for s = 1

Theorem (L.)

Conjecture is true for depth 1 extremal forms.

Proof.

For $w \equiv 0 \pmod{6}$ and $w \ge 12$, we can prove

$$X'_{w,1} = \frac{5w}{72} X_{6,1} X_{w-4,1} + \frac{7w}{72} X_{8,1} X_{w-6,1}$$
$$X'_{w+2,1} = \frac{5w}{72} X_{6,1} X_{w-2,1} + \frac{7w}{12} X_{8,1} X_{w-4,1}$$
$$X'_{w+4,1} = 240 X_{6,1} X_{w,1} + \frac{7w}{72} X_{8,1} X_{w-2,1} + \frac{5w}{72} X_{10,1} X_{w-4,1}$$

and these imply nonnegativity of q-coefficients.

We also have similar identities proving complete positivity of the depth 2 extremal forms of weight $w \le 14$:

$$X_{4,2} = \frac{1}{24}(-E'_2)$$

$$X'_{8,2} = 2X_{4,2}X_{6,1}$$

$$X'_{10,2} = \frac{8}{9}X_{4,2}X_{8,1} + \frac{10}{9}X^2_{6,1}$$

$$X'_{12,2} = 3X_{6,1}X_{8,2}$$

$$X'_{14,2} = 3X_{4,2}X_{12,1}$$

but we don't have ones for general w yet.

d = 8, new proof

Let's get back to the modular form inequality for d = 8 case. The second (hard) inequality was

$$F(it) < \frac{18}{\pi^2}G(it)$$

where

$$F = (E_2 E_4 - E_6)^2$$

$$G = H_2^3 (2H_2^2 + 5H_2H_4 + 5H_4^2).$$

d = 8, new proof

Let's get back to the modular form inequality for d = 8 case. The second (hard) inequality was

$$F(it) < \frac{18}{\pi^2}G(it)$$

where

$$F = (E_2 E_4 - E_6)^2$$

$$G = H_2^3 (2H_2^2 + 5H_2H_4 + 5H_4^2).$$

Let's rewrite it as

$$\frac{F(it)}{G(it)} < \frac{18}{\pi^2}$$

which is still inhomogenous. How the function on the left hand side looks like?

d = 8, new proof

Let's get back to the modular form inequality for d = 8 case. The second (hard) inequality was

$$F(it) < \frac{18}{\pi^2}G(it)$$

where

$$F = (E_2 E_4 - E_6)^2$$

$$G = H_2^3 (2H_2^2 + 5H_2H_4 + 5H_4^2).$$

Let's rewrite it as

$$\frac{F(it)}{G(it)} < \frac{18}{\pi^2}$$

which is still inhomogenous. How the function on the left hand side looks like? Since I cannot plot it myself, let's ask Sage...

d = 8, homogenization

This graph tells us what we should try:

Proposition

$$\lim_{t\to 0^+}\frac{F(it)}{G(it)}=\frac{18}{\pi^2}.$$

Proposition

The function

$$t\mapsto \frac{F(it)}{G(it)}$$

is decreasing in t.

and both turned out to be true.

d = 8: limit

Proof of the limit.

We have

$$\lim_{t \to 0^+} \frac{F(it)}{G(it)} = \lim_{t \to \infty} \frac{F(i/t)}{G(i/t)}$$

and F and G satisfy the following functional equations:

d = 8: limit

Proof of the limit.

We have

$$\lim_{t\to 0^+} \frac{F(it)}{G(it)} = \lim_{t\to\infty} \frac{F(i/t)}{G(i/t)}$$

and F and G satisfy the following functional equations:

$$F\left(\frac{i}{t}\right) = t^{12}F(it) - \frac{12t^{11}}{\pi}(E_2(it)E_4(it) - E_6(it))E_4(it) + \frac{36t^{10}}{\pi^2}E_4(it)^2,$$

$$G\left(\frac{i}{t}\right) = t^{10}H_4(it)^3(2H_4(it)^2 + 5H_4(it)H_2(it) + 5H_2(it)^2).$$

The red terms are cusp forms, and the orange terms converges to 1. Hence the limit is $\frac{36/\pi^2}{2} = \frac{18}{\pi^2}$.

d = 8: monotonicity

Proof of the monotonicity.

It is enough to show that

 $\mathcal{L}_{1,0} = F'G - FG' = (\partial_{10}F)G - F(\partial_{10}G)$ is positive. We have

d = 8: monotonicity

Proof of the monotonicity.

It is enough to show that $\mathcal{L}_{1,0} = F'G - FG' = (\partial_{10}F)G - F(\partial_{10}G) \text{ is positive. We have}$

$$\partial_{10}^2 F - \frac{5}{6} E_4 F = 172800 \Delta X_{4,2} > 0,$$

$$\partial_{10}^2 G - \frac{5}{6} E_4 G = -640 \Delta H_2 < 0$$

which gives

$$\begin{split} \partial_{22}\mathcal{L}_{1,0} &= (\partial_{10}^2 F)G - F(\partial_{10}^2 G) = \Delta(172800X_{4,2}G + 640H_2F) > 0 \\ \text{and so } \mathcal{L}_{1,0} > 0. \end{split}$$

d = 8: monotonicity

Proof of the monotonicity.

It is enough to show that $\mathcal{L}_{1,0} = F'G - FG' = (\partial_{10}F)G - F(\partial_{10}G) \text{ is positive. We have}$

$$\begin{split} \partial_{10}^2 F &- \frac{\mathbf{5}}{\mathbf{6}} E_4 F = 172800 \Delta X_{4,2} > 0, \\ \partial_{10}^2 G &- \frac{\mathbf{5}}{\mathbf{6}} E_4 G = -640 \Delta H_2 < 0 \end{split}$$

which gives

$$\partial_{22}\mathcal{L}_{1,0} = (\partial_{10}^2 F)G - F(\partial_{10}^2 G) = \Delta(172800X_{4,2}G + 640H_2F) > 0$$

and so $\mathcal{L}_{1,0} > 0$.

Easy to be checked by Sage (or less easily by hands).

$$\partial_{14}F = 6706022400X_{6,1}X_{12,1} \in \mathcal{QM}_{18}^{2,++}$$

$$\partial_{14}F = 6706022400X_{6,1}X_{12,1} \in \mathcal{QM}_{18}^{2,++}.$$

The hard inequality inequality can be proved in the same way as d = 8 case. We have

$$\partial_{14}F = 6706022400X_{6,1}X_{12,1} \in \mathcal{QM}_{18}^{2,++}.$$

The hard inequality inequality can be proved in the same way as d = 8 case. We have

$$\partial_{14}^2 F - \frac{14}{9} E_4 F = c \Delta X_{8,2},$$

$$\partial_{14}^2 G - \frac{14}{9} E_4 G = 0$$

for c = 548674560.

$$t^{10}\left(-\frac{F(i/t)}{\Delta(i/t)^2} + \frac{432}{\pi^2}\frac{G(i/t)}{\Delta(i/t)^2}\right) \ge \frac{725760}{\pi}e^{2\pi t}\left(t - \frac{10}{3\pi}\right)$$

is more complicated, but we can prove it as follows:

$$t^{10}\left(-\frac{F(i/t)}{\Delta(i/t)^2} + \frac{432}{\pi^2}\frac{G(i/t)}{\Delta(i/t)^2}\right) \ge \frac{725760}{\pi}e^{2\pi t}\left(t - \frac{10}{3\pi}\right)$$

is more complicated, but we can prove it as follows:

•
$$\Delta(it) < e^{-2\pi t}$$
 for all $t > 0$,

$$t^{10}\left(-\frac{F(i/t)}{\Delta(i/t)^2} + \frac{432}{\pi^2}\frac{G(i/t)}{\Delta(i/t)^2}\right) \ge \frac{725760}{\pi}e^{2\pi t}\left(t - \frac{10}{3\pi}\right)$$

is more complicated, but we can prove it as follows:

• $\Delta(it) < e^{-2\pi t}$ for all t > 0, by the product expansion of Δ . Then we can replace $e^{2\pi t}$ by $1/\Delta(it) = t^{12}/\Delta(i/t)$.²

$$t^{10}\left(-\frac{F(i/t)}{\Delta(i/t)^2} + \frac{432}{\pi^2}\frac{G(i/t)}{\Delta(i/t)^2}\right) \ge \frac{725760}{\pi}e^{2\pi t}\left(t - \frac{10}{3\pi}\right)$$

is more complicated, but we can prove it as follows:

- $\Delta(it) < e^{-2\pi t}$ for all t > 0, by the product expansion of Δ . Then we can replace $e^{2\pi t}$ by $1/\Delta(it) = t^{12}/\Delta(i/t)$.²
- The reduced inequality follows from monotonicity of it again, which is equivalent to (for $0 < t < \frac{3\pi}{10}$)

 $\mathcal{L}_{1,0}(it) - 725760\Delta(it)\left[(\partial_{12}G)(it)\left(\frac{1}{\pi t^3} - \frac{10}{3\pi^2 t^2}\right) - G(it)\left(\frac{3}{2\pi^2 t^4} - \frac{10}{3\pi^3 t^3}\right)\right] > 0$

d = 24: harder inequality

• Use Serre derivative trick again; Serre derivative of the above function factors nicely and it reduces to the positivity of $7560X_{8,2}(it) - \frac{37E_4(it)-E_2(it)^2}{24} \left(\frac{1}{\pi t^3} - \frac{10}{3\pi^2 t^2}\right) - E_2(it) \left(\frac{3}{4\pi^2 t^4} - \frac{5}{3\pi^3 t^3}\right) + \left(\frac{3}{\pi^3 t^5} - \frac{5}{\pi^4 t^4}\right).$

d = 24: harder inequality

- Use Serre derivative trick again; Serre derivative of the above function factors nicely and it reduces to the positivity of $7560X_{8,2}(it) - \frac{37E_4(it)-E_2(it)^2}{24} \left(\frac{1}{\pi t^3} - \frac{10}{3\pi^2 t^2}\right) - E_2(it) \left(\frac{3}{4\pi^2 t^4} - \frac{5}{3\pi^3 t^3}\right) + \left(\frac{3}{\pi^3 t^5} - \frac{5}{\pi^4 t^4}\right).$
- If we denote this as h(t), then $t^{-8}h(1/t)$ can be written as

$$7560X_{8,2}(it) + \frac{1}{\pi t} \left[\left(\frac{3}{10} - \frac{1}{\pi t} \right) J_1(it) + \frac{3}{40} J_2(it) + \frac{7}{4} J_3(it) \right]$$

with

$$J_1 = \frac{5}{36}E_2^2 + \frac{1}{9}E_4 - \frac{1}{4}E_2, \quad J_2 = E_2 - E_6, \quad J_3 = E_2E_4 - \frac{1}{10}E_6 - \frac{9}{10}E_4$$

which are all positive (for $t \geq \frac{10}{3\pi}$).

Future works

• What are the (completely) positive forms?

- What are the (completely) positive forms?
- Possible applications in other LP problems?

- What are the (completely) positive forms?
- Possible applications in other LP problems?
 - Dual LP, uncertainty principle, etc.
 - Any results that are "uniform" in dimensions?

- What are the (completely) positive forms?
- Possible applications in other LP problems?
 - Dual LP, uncertainty principle, etc.
 - Any results that are "uniform" in dimensions?
- Make a formalization of the proof (e.g. in Lean) easier?

- What are the (completely) positive forms?
- Possible applications in other LP problems?
 - Dual LP, uncertainty principle, etc.
 - Any results that are "uniform" in dimensions?
- Make a formalization of the proof (e.g. in Lean) easier?
 - ● thefundamentaltheor3m / Sphere-Packing-Lean A (WIP)

Paper: arxiv.org/abs/2406.14659 Code: github.com/seewoo5/posqmf Thank you! ...Do I have more time?

For d = 24, why we take k = 14 to prove F(it) > 0 using $\partial_{14}F(it) > 0$?

In general, we have the following theorem: if F has weight w and depth s, then ∂_{w-s}F has weight w + 2 and depth ≤ s. Our F has weight 16 and depth 2, so k = 16 - 2 is something special that we can try to see.

Where the 5/6 of

$$\partial_{10}^2 F - \frac{5}{6} E_4 F = 172800 \Delta X_{4,2} > 0,$$

$$\partial_{10}^2 G - \frac{5}{6} E_4 G = -640 \Delta H_2 < 0$$

comes from?

The differential operator
 ²/_k - ^{k(k+2)}/₁₄₄ E₄ first appears in the paper "Supersingular *j*-invariants, hypergeometric series, and Atkin's orthogonal polynomials" by Kaneko–Zagier. Any possible conceptual connections/explanations?

The new recurrence relations

$$X'_{w,1} = \frac{5w}{72} X_{6,1} X_{w-4,1} + \frac{7w}{72} X_{8,1} X_{w-6,1}$$
$$X'_{w+2,1} = \frac{5w}{72} X_{6,1} X_{w-2,1} + \frac{7w}{12} X_{8,1} X_{w-4,1}$$
$$X'_{w+4,1} = 240 X_{6,1} X_{w,1} + \frac{7w}{72} X_{8,1} X_{w-2,1} + \frac{5w}{72} X_{10,1} X_{w-4,1}$$

are conjectured based on Sage computations: If you try to express LHS with linear combination of the terms in RHS, then you get very simple positive rational coefficients, where the general formula can be easily guessed.

More comments on future works

- What are the (completely) positive forms?
 - Counting functions? (Kaneko–Zagier) *d*-th coefficient of X_{6,3} counts the number of simply ramified coverings of genus 2 and degree *d* of an elliptic curve over ℂ.
 - Geometric meaning? (Movasati) Quasimodular forms can be interpreted as sections of *jet bundles* on modular curves.
 - What are the "generators" of $\mathcal{QM}_{w,s}^+$ and $\mathcal{QM}_{w,s}^{++}$?
 - Positivstellensatz of quasimodular forms?
 - **Conjecture** (L., I don't believe) *F* is completely positive if and only if *F*^(*r*) can be expressed in terms of extremal forms for some *r*.

More comments on future works

- Possible applications in other LP problems?
 - (Cohn-Triantafillou) Dual LP
 - (Brougain–Clozel–Kahane, Cohn–Gonçalves) Uncertainty principle
 - Any results that are "uniform" in dimensions?
 - Feigenbaum–Grabner–Hardin, *Eigenfunctions of the Fourier Transform with specified zeros*
 - Theorem (L.) Kaneko-Koike conjecture for s = 2 implies positivity of FGH's "(-1)^{d/4}" family of modular forms.

More comments on future works

- Make a formalization of the proof (e.g. in Lean) easier?
 - Leading by Sidharth Hariharan (for their master's thesis!) and including Chris Birkbeck, Gareth Ma, Maryna Viazovska, ...
 - Blueprint:

• 1 year for completion?