Algebraic proof of modular form inequalities
for optimal sphere packings

Seewoo Lee



o We develop simple but surprisingly useful tools to study
(completely) positive quasimodular forms.

e Using the theory, we give algebraic proofs of Viazovska and
Cohn—Miller—-Kumar—Radchenko—-Viazovska's modular form

inequalities for the Eg and Leech lattice packing in dimensions
8 and 24.

e We also prove a conjecture of Kaneko and Koike for the
extremal forms in the case of depth 1.



Sphere packing

Question
For given d > 1, find an optimal sphere (in fact, ball) packing of
RY and its density Ay.



Sphere packing, d =1




Sphere packing, d =1

Theorem
A1 =



Sphere packing, d =1

Theorem
A1 =1.

Proof.

R = Upezl2n —1,2n + 1] = U,z B1(2n). O



Sphere packing, d =2




Sphere packing, d =2

Theorem (Thue 1890, Té6th 1942)
Hexagonal packing (Ax lattice packing) is optimal with




Spehere packing, d =3




Spehere packing, d =3

Theorem (Kepler conjecture, Hales 1998)

Cannon ball packing are optimal with Az = —"~.

e Uncountably many optimal packings

e Computer-assisted, formally verified in 2014 using Isabelle +
HOL light (with 20 more people)



Sphere packing, d > 4



Sphere packing, d > 4

Theorem

The following packings are optimal among lattice packings.

d |4 5 6 7 8§ 24

Lattice | Dy Ds Dg Er FEg Leech

e d = 4,5 by Korkine and Zolotareff
e d =6,7,8 by Blichfeldt
e d =24 (and d = 8 again) by Cohn and Kumar

Conjecture

Above lattice packings are optimal among all packings.



Sphere packing

And...



Sphere packing, d =8

Theorem (Viazovska, 2016 7w-day on arXiv)

4

Eg lattice packing is optimal with Ag = 3g.

1\8 &
Egz{(xi)€Z8U<Z+2> :Zx,-_O(mod2)}CR8
i=1






Sphere packing, d = 24

Theorem (Cohn—Kumar—Miller—Radchenko—Viazovska,
March 21st 2016 on arXiv)

l2

Leech lattice packing is optimal with Apgq = T5;.

Unique even unimodular lattice with nonzero minimial length
A(A24) = 2. Can be constructed by the binary Golay code,
Lorentzian lattice /bs 1, etc.
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How?
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LP bound

How? We have a Linear programming bound for sphere packing:
Theorem (Cohn-Elkies, 2003)

Let r > 0. Assume that there exists a nice function f : RY — R
satisfying

~

e f(0)=f(0)>0,
o f(x) <0 forall ||| >r,
. f(y) >0 for ally € RY.

Then 9
d 7

< dy— (L) T __

Ay < vol(BY),) (2) o

12



LP bound

Sketch of the proof.

For lattice packing: let A C RY be a lattice with minimum length
r. By Poisson summation formula,

_ 1 = F(0)
Iz =g (R/A) Z ) 2 JGima

xEN
and £(0) = 7(0) > 0 gives
voI(Br/z)

vol(R?/A) > 1 & (density) = W vol( r/2)

Non-lattice packings can be approximated by a finite union of
lattice packings, and the result follows similarly. Ol

13



Hunt for magic function

Cohn and Elkies experimented with functions of the form
(polynomial) x (gaussian), and the obtained upper bounds were
surprisingly close to the conjectured bound in dimensions
d=2,8,24.
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Hunt for magic function

Cohn and Elkies experimented with functions of the form
(polynomial) x (gaussian), and the obtained upper bounds were
surprisingly close to the conjectured bound in dimensions
d=2,8,24.

One can assume that f is radial, i.e. f(x) only depends on the
norm ||x|| of the input (by averaging over each sphere).
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Hunt for magic function

Cohn and Elkies experimented with functions of the form
(polynomial) x (gaussian), and the obtained upper bounds were
surprisingly close to the conjectured bound in dimensions
d=2,8,24.

One can assume that f is radial, i.e. f(x) only depends on the
norm ||x|| of the input (by averaging over each sphere).

If we follow the proof of LP bound that uses Poisson summation
formula, both f and f should have zeros at the nonzero lattice
points, and nonpositivity (resp. nonnegativity) assumptions on f

(resp. f) enforces them to be zeros of order 2 (except for the
“first” zero of f).

14



Hunt for magic function

Hence f has a following form (for d = 8)

\

\
\ } — T T T T
A Vi Vi V6 B

How to construct such a function? Under the philosophy of
uncertainty principle, it is hard to control both f and f at once.

ii5)



Viazovska’s construction

Viazovska (and colleagues) constructed the magic functions for
d = 8,24, using modular forms.

16



Viazovska’s construction

Viazovska (and colleagues) constructed the magic functions for
d = 8,24, using modular forms.

Decompose f into Fourier eigenfunctions f = f, + f_, where

f+ = f; and f_ = —f_. Viazovska write them as
fi(x) = / oy (t)e ™M Itge,
0
where is included to enforce desired roots. Then fi

being Fourier eigenfunctions correspond to ¢+ being
“(quasi)modular forms”.
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Viazovska’s construction

Viazovska (and colleagues) constructed the magic functions for
d = 8,24, using modular forms.

Decompose f into Fourier eigenfunctions f = f, + f_, where

f+ = f; and f_ = —f_. Viazovska write them as
fi(x) = / oy (t)e ™M Itge,
0
where is included to enforce desired roots. Then fi

being Fourier eigenfunctions correspond to ¢+ being
“(quasi)modular forms”. Now the linear constraints (inequalities)
on f and f reduces to the modular inequalities

pr(t) + (1) <O,
pi(t) —p-(t) > 0.

16



Modular forms

Definition

Let H be the complex upper half plane and I' C SL(Z) be a
congruence subgroup. A holomorphic function f : H — C is a
modular form of weight k and level I if

f Cji:) — (cz + d)¥F(2)

forall z€ H and (25) €T, and satisfies nice growth condition
at cusps.

o If (§1) €T, f(z+1) = f(z) and hence f admits a Fourier

2miz

expansion in g = e at oc.

17



Modular forms

Examples:

e FEisenstein series

Es=1+240) o03(n)q", Ee=1-504% os5(n)q"
n>1 n>1

e Discriminant form (cusp form of level SL>(Z), weight 12)

A=(E-E)1128=q[[(1-q")* =q—28g"+--.
n>1

e Jacobi thetanulle functions (level I'(2), weight 1/2)
2 n2 n
0= ¢ @;="¢%, @,=Y (-1)¢%

neZ neZ ne”Z

18



Quasimodular forms

Definition (informal)

Quasimodular forms are

e the functions act as modular forms but not exactly, or
e modular forms with E5, or

e modular forms with differentiations.

19



Quasimodular forms

For example, Ep =1 —24%" -, 01(n)q" satisfies

and the ring of quasimodular forms (of level SL(Z)) is generated
by Ej, E4, Es, closed under the differentiation

1 df df
f ~ -5 —49— n T n v
iz qdq’ nz>:oa g nz;ona g

20



Quasimodular forms

We denote QM (') for the space of quasimodular forms of
weight w and depth < s, where depth is the degree of E; in the
polynomial expression of the quasimodular form.

Differentiation increases weight by 2 and depth by 1, which can be
computed using Ramanujan’s identities
E?—E4

B==_" =

ExEq — Eo

E,Es — E?
3 '

B =22

21



d=238

Recall that we set f = f| + f_ where

2 ge)
f:t(X) _ sin2 <7T‘;<H ) / (pi(t)e_ﬂHX'Ptdt,
0

and find ¢4 such that f; = +f. Viazovska proved that, if we put
@+ (t) = t?1(i/t) for some holomorphic 1+ : H — C,

fi = fy <, € QM2 (SLa(Z)) such that ...
f=—f <y e QM%(F(2)) such that ...

Here ! stands for weakly holomorphic modular forms (i.e. allow
poles at infinity). Viazovska's ansatz for 1)+ was that ¢)L A are
holomorphic modular forms.

22



1

The actual modular forms are

(BB — Ee)?
o = 18 ©5%(268 + 5030; + 563)
- 2 A

The corresponding integrals only converge for ||x|| > /2, and one
needs to analytically continue to 0 < ||x|| < v/2. Then the
inequalities ¥ < 0 or f > 0 reduces to

i it) + V(i) < 0, by (it) — ¥_(it) > 0.

'Here we normalized in a slightly different way. We have £(0) = f(0) = .

23



d = 8, modular form inequalities

For simplicity, we write

F = (ExE4 — E5)?
G = H3(2H3 + 5HyHy + 5Hj),

where H, = ©3 and Hs = ©F. Then the inequalities for f and F
reduce to

18
Eiir) 4 B
(it) + - G(it) >0,

F(it) — gG(it) <0

24



d = 8, Viazovska’s proof

Viazovska's original proof uses approximations of Fourier
coefficients and reduce it to finite calculations + interval
arithmetic (for both inequalities).
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d = 8, Viazovska’s proof

Viazovska's original proof uses approximations of Fourier
coefficients and reduce it to finite calculations + interval
arithmetic (for both inequalities).

More precisely, Viazovska used a bound of Fourier coefficients of

the form
()] < 267V

that comes from the Hardy—Ramanujan formula, and write the
modular forms as

A(t) = o (it) + - (it) = A () + R(1)

with e € {0, 00} and Ag")(t) is n-th approximation of A(t) as
t — e, then prove |R£n)(t)| < |A£")(t)\ using interval arithmetic.
Similar proof for B(t) = ¢4 (it) — ¢_(it).
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d = 8, Romik’s proof

Recently (2023), Romik give an alternative and much simpler proof
of d = 8 case that does not use any of interval arithmetic.
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d = 8, Romik’s proof

Recently (2023), Romik give an alternative and much simpler proof
of d = 8 case that does not use any of interval arithmetic.

The first inequality is “easy”: we have F(it) > 0 and G(it) >0
separately (this was not clear form Viazovska's original expression

of ;).
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d = 8, Romik’s proof

Recently (2023), Romik give an alternative and much simpler proof
of d = 8 case that does not use any of interval arithmetic.

The first inequality is “easy”: we have F(it) > 0 and G(it) >0
separately (this was not clear form Viazovska's original expression

of ;).

But the second inequality is still “hard”: we need to compare
modular forms of different weights (12 and 10). Romik considered
the cases 0 < t < 1 and t > 1 separately, and used various
identities and monotonicity propertices.

26



d = 8, Romik’s proof

For example, we have

2

%F(z) = 2880072q? 4 103680072 ¢> + 1416960072 g*+

G(z) = 20480¢%/2 + 2015232¢%/2 + 416563207/2 + - - - .

Both F and G have nonnegative Fourier coefficients, so 37t F (it)
and 3™t G(jt) are both monotone in t.

27



d = 8, Romik’s proof

For example, we have

2

71T—8F(z) = 2880072¢% 4 103680072 q> + 1416960072 g*+

G(z) = 20480¢%/2 + 2015232¢%/2 + 416563207/2 + - - - .
Both F and G have nonnegative Fourier coefficients, so e3”F(it)

and e3"tG(it) are both monotone in t. Using explicit values of

modular forms like

8
Ex(i) = ; Ei(i) = w, Es(i) =0,

we get a proof for t > 1:
3R (it) < €3 F(i) = 13130.47 - - - < 20480 < 3™ G (it)

This gives a “calculator-assisted” proof. 0 < t < 1 is more

complicated.
27



d = 8, modular form inequalities

Question

Any algebraic proofs? Can we homogenize the inequality?

28



d = 8, homogenization

Let's rewrite it as

which is still inhomogenous.
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d = 8, homogenization

Let's rewrite it as )
F(it) 18

G(it) =2

which is still inhomogenous. How the function on the left hand

side looks like?
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d = 8, homogenization

Let's rewrite it as )
F(it) 18

G(it) =2

which is still inhomogenous. How the function on the left hand

side looks like? Since | cannot plot it myself, let's ask SAGE...

29



d = 8, homogenization

-18/pi"2
—=F(it) / Glit)

0.5 1.0 1.5 2.0
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d = 8, homogenization

This graph tells us what we should try:

Proposition

Proposition

The function

is decreasing in t.

and both turned out to be true.
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d =8: limit

Proof of the limit.
We h
€ nave _F(it) . F(i/Y)
lim —~ = lm -
t—»0+ G(it)  t—oo G(i/t)

and F and G satisfy the following functional equations:

32



d =8: limit

Proof of the limit.
We have
! _F(it) . F(i/t)
lim — = lim :
t—»0+ G(it)  t—oo G(i/t)
and F and G satisfy the following functional equations:

F (%) = 2R (it) 12:1 (Ex(it) Ea(it) — Es(it)) Ea(it) + 33:210 ,

G (i) = ¢ (2 + 5Ha(it)Ha(it) + 5Ha(it)?).
The red terms are cusp forms, and the terms converges
2
to 1. Hence the limit is 36£7T = %.

O]
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d = 8: monotonicity

The monotonicity is equivalent to the homogenous inequality
F'(it)G(it) — F(it)G'(it) > 0.

Let's see what SAGE tells us...
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d = 8: monotonicity

The monotonicity is equivalent to the homogenous inequality
F'(it)G(it) — F(it)G'(it) > 0.
Let's see what SAGE tells us... that the inequality is equivalent to
1
(Ha + Hy)?H3 (E2E4 — Es) <E4 — 5Ea(H+ 2H4)> >0
First two terms are clearly positive, the third term is

(ExEq — Eg)(it) = 3E,(it) = 720 anl n03(n)e*27”7t > 0.

33



d = 8: monotonicity

The last factor can be written as
E4(it) — Ex(it)(2Ex(2it) — Ex(it)) > 0,
which is equivalent to
(Ea(it) — E4(2it)) + (E4(2it) — Ex(2it)?) + (Ex(it) — E2(2it))* > 0.
The first term is positive since

Eq(it) =1+240)  o3(n)e ™"
n>1
is monotone decreasing, and the second term is positive since
Ea(2it) — Ex(2it)* = —12E5(2it) = 288 Y _ noy(n)e *™ > 0.
n>1

Hence F(it)/G(it) < lim, o+ F(iu)/G(iu) = 3. O

34



What about d = 24?7 The corresponding (quasi)modular forms are

F
Yy = A2
432 G
Vo= ar

where

F = 49FJE; — 25E3EZ — 48E,Ef Es — 25E; + 49E,E2,
G = H3(2H3 + THoHy + TH3).

85



F = 49E3E; — 25E3E2 — 48E,EZEg — 25E; + 49E,E2,
G = H3(2H3 + THyHy + TH3).
Then we need to prove the following three inequalities:?
432
F(it) + —G(it) >0,
F(it) — G(/t)
0 (_ F(i/t) | ARZ 432 G( i/t) 725760 2t t—E ‘
A(i/t)? w2 A(i/t)? T 3r

2The second inequality can only prove f(r) > 0 for r > /2, but not for

0 < r < /2, and we need the third inequality for the remaining part.

36



But the “easy” inequality does not seem easy. G(it) > 0 is clear
from the expression (and already observed by CKMRV), but for

F = 49EZE} — 25E3EZ — 48E,EFEg — 25E, + 49E,EZ,

it is not clear why F(it) > 0.

And the second is harder, and the last inequality is much harder.

37



(Completely) positive quasimodular forms

To prove the 24-dimensional modular form inequalities, we develop
some theory of (completely) positive quasimodular forms.

38



(Completely) positive quasimodular forms

Definition
Let I C SLy(Z). We call F € QM;, (') a positive
quasimodular form if it has real g-coefficients and

F(it)>0
for all t > 0. We denote QM ;T () for the set of positive

quasimodular forms.

We call F € OM;,(I') a completely positive quasimodular
form if it has nonnegative real coefficients. We denote
QM TH(T) for the set of completely positive quasimodular

forms.

39



(Completely) positive quasimodular forms

We have QMSTT C QMST C QMS,, and the two sets form a
convex cone in QM;,.

The inclusion is strict in general:
A(q) = q]l,>1(1 —¢")* = g —24¢> + - - - is positive but not
completely positive.

40



Positive forms and derivatives

Proposition
@ IfF isa cusp form and F' € QMS ™, then F € QMi;_E’f

@ IfF e QM3 then F") € QMENST forall r > 0.

41



Positive forms and Serre derivatives

Definition
For k € Z and F € QM;, ('), define Serre derivative Oy F of F
as
oF = F — L EF.
12

A priori, OxF € Q/\/liié(r). However,

Proposition
When k = w — s, Ow—s maps F € QM;, to 0, —sF € QM;, .».

2_
For example, E} = E212E4 and 01 E> = —% € QMY = oMi.

42



Positive forms and Serre derivatives

Proposition

Let F =3, anq" € QM;, be a quasimodular cusp form of
real coefficients with ng > k/12 and an, > 0. If OxF € QM;SFE
for some k, then F € QM3 ",

In other words, anti-Serre-derivative preserves positivity.

43



Positive forms and Serre derivatives

Proof.
Let G = OkF. If f(t) := F(it) and g(t) := G(it), then we have a
first order linear differential equation

that we know how to solve:

44



Positive forms and Serre derivatives

Proof.
Let G = OkF. If f(t) := F(it) and g(t) := G(it), then we have a
first order linear differential equation

that we know how to solve: from (log A) = E; and A = 7?4,

0= (45" e [ (49" e

for any tg > 0. Now take tg — o0. []

44



Positive forms and Serre derivatives

Proposition

Let F =3 5, anq" € QM5 "". For k>0 and n> k/12, the
n-th coefficient of OxF is nonnegative. Especially, if
no > k/12 > 0, then OxF is also completely positive.

In other words, Serre derivative preserves complete positivity
(under mild assumption on the vanishing order at cusp).

45



Positive forms and Serre derivatives

Proof.
From E; =1—-24%" -, 01(n)q", O«F has a g-expansion

k k
(no - E) anq™ + ((no +1-— ﬁ> Ang+1 + 2kan0> gt
k z . no+m
| (mo+m—o Ang+m + 2k E o1(m+1—j)anj-1]|4q +--

j=1

and the result follows. ]
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Extremal forms

Definition (Kaneko—Koike)

For a given weight w and depth s, extremal quasimodular form
of weight w and depth w, X, s, is a quasimodular form of
largest possible vanishing order at the cusp. More precisely, X, s

admits a g-expansion

Xw,s = Z anqn

n>m

where m = dim¢ OM;, — 1 and a, # 0.

47



E2Eq — Eg

Xop=——o5— =4+ 18q° + 84¢° + 292 + 630g° + - - -
—EyE + E?

Xg1 = % = g+ 66¢% + 732¢° + 4228q¢" + 156304° + - - -
—EZ + E

X“’F§T4=q+6q2+12q3+28q4+30q5+~~
—7E2E, + 2E,E + 5E2

Xgo = 2 4 — g%+ 16¢° + 102¢* + 4164¢° + - - -

8.2 362880 q- +10g7 + 102g" + 4167+

_ 5E3 —3EE, — 2Es
a 51840

= q%> +8¢° +30g* + 80g° + - --
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Uniqueness, existence, and computation

Theorem (Pellarin)

For 1 < s < 4, extremal forms of weight w and depth s is unique
up to constant.

Theorem (Kaneko—Koike, Grabner)

For1 < s <4, we have recurrence relations and differential
equations satisfied by the extremal forms.

49



Recurrence relations, s =1

For w = 0(mod6),
12

Xwiy2,1 = v 16W—1XW,17
Xw+a1 = EaXy 1,
w+6 w+1
X = Esdp 1 X1 — Es X,
w+6
= —— (E4 X — Eg X
564(w 1 5) (EaXw+2,1 — E6Xw1),
and ( 1
w w\w —
wil— €E2X;v,1 + T(Ef — E4)Xw1 =0.

50



Kaneko—Koike conjecture

Conjecture (Kaneko—Koike)
Extremal forms of depth 1 < s < 4 have nonnegative
g-coefficients.

Theorem (Grabner)

Conjecture is true for all but finitely many coefficients (for
each form).

Proof uses Deligne’s bound: if we write a, = a, Eis + an,cusp:

an Eis > an,cusp as N — 00. Using effective version of Deligne's
bound (e.g. Jenkins—Rouse), one can check nonnegativity for all
n's when given w, s are small.

Bl



Kaneko—Koike conjecture for s =1

Proposition (L.)
For w = 0(mod 6) and w > 12, we have

52



Kaneko—Koike conjecture for s =1

Proposition (L.)
For w = 0(mod 6) and w > 12, we have

/

5w Tw
= —Xg1Xw— —Xg1Xw—6.1-
wl = 75 2614w 41+ 75 814w-6,1

5w Tw
Xoio1 = 772X6,1XW72,1 - EX&lefél,l

Tw Sw
=~ X8 1 Xw—21+ 57 X101 Xw—41.

lev+4,1 = 240X6’1XW’1 4F 75 75
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Kaneko—Koike conjecture for s =1

Proposition (L.)
For w = 0(mod 6) and w > 12, we have

/

5w Tw
= —Xg1Xw— —Xg1Xw—6.1-
wl = 75 2614w 41+ 75 814w-6,1

5w Tw
Xoyio1 = 772X6,1XW72,1 + EX8,1Xw74,1
7
Wy

Sw
= 8,1Xw—2,1 + == X10,1 Xw—4,1.

Corollary

Conjecture is true for depth 1 extremal forms.
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Kaneko—Koike conjecture for s = 2

We also have similar proof for depth 2 extremal forms of weight
w < 14:

X5 = 2Xa2X61
8 10

Xioo = §X4,2X8,1 L Exg,l

X122 = 3X6,1Xs,2
Xiap = 3Xa2X12,1

but we don't have a proof for general cases yet.
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d = 24 inequalities

Recall that our goal is to prove the following inequalities: for

F = 49E3E} — 25E3EZ — 48E,Ef Eg — 25E) + 49E,4EZ
G = H3(2H3 + THyHy + THZ),

we have
432
. >
F(it) + —ﬂ G(it) > 0,
F(it) — —G(lt)

F(i/t) 432 G(i/t 725760 ., 10
th(A(i/t)ﬁﬂ A(//tv)Z . (t&r)
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d = 24 inequalities: “easy”

It is clear that G(it) > 0 from definition. It is less clear for F, but
SAGE says...
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d = 24 inequalities: “easy”

It is clear that G(it) > 0 from definition. It is less clear for F, but
SAGE says...

Proposition

OuF =
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d = 24 inequalities: “easy”

It is clear that G(it) > 0 from definition. It is less clear for F, but
SAGE says...

Proposition

Corollary
F(it) >0 for all t > 0.
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d = 24 inequalities: “hard”

For the second inequality, we have a similar plot:
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d = 24 inequalities: “hard”

For the second inequality, we have a similar plot:

40%
35%
30%
25;
20%
15%

10 4

-432 [ pi~2
—Flit) / G(it)

0.5 1.0 s 2.0
56



d = 24 inequalities: “hard”

Based on the previous observations, second (hard) inequality would

follow from
Proposition
. F(it) 432
lim — = —
t—»ot G(it) w2
and
Proposition

The function t — % is strictly decreasing on t > 0.
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d = 24 inequalities: “hard”

Based on the previous observations, second (hard) inequality would

follow from
Proposition
. F(it) 432
lim — = —
t—»ot G(it) w2
and
Proposition

The function t — % is strictly decreasing on t > 0.

We leave the first limit as an exercise for audiences.
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d = 24 inequalities: “hard”

The monotonicity of F(it)/G(it) is equivalent to
L10:=F'G—FG >0,

which is a weight 32, depth < 3, and level ['(2) quasimodular form.
This also factors quite nicely, but not as nice as d = 8 case:

L10 = HSHZ(Ha + Ha)? - L1
where Zl,o = K10E22 + Ki2E» 4+ Kig4 is a quasimodular form of
weight 14, level ['9(2) C I'(2), and depth 2 with
Kio = —2(23H3 + 46H3 Ha + 54H3 Hz + 16HoH; + 8Hg ) (Ha + 2Ha),
Kio = —2(10H3 + 35H3Ha + 3H3 Hy — 64HyH; — 32Hy )(H3 + HoHa + Hy),
Kia = (26H3 + 78H3 Hs + 177H3 H; + 182H3 H; + 51H3 Hy — 48H,H; — 16HS)

X (Ha + 2H,).

Here Ky, 's for w € {10,12,14} are weight w, level 'g(2) modular

forms. 58



d = 24 inequalities: “hard”

Instead, we oberve its Serre derivative. Note that

L10=F'G— FG'
= (04F)G — F(014G)
— 13424296093286400q 2 -+ 494781198866841600g= + O(q2 )

and so has depth 2. If we apply 039 = 032_2, we get
Lo0 = (034F)G — F(93,G) = 930L10

(where 92, = 016014) and it is enough to show that L5 is positive.
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d = 24 inequalities: “hard”

Now, surprisingly, F and G satisfy the following differential
equations:
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d = 24 inequalities: “hard”

Now, surprisingly, F and G satisfy the following differential

equations:
14
O F = EEL;F + cAXs 0,
14
95,6 = —EG
9
for ¢ = 548674560. This gives
£270 = CAX&QG >0

and we get L19 > 0. O
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d = 24 inequalities: “hard”

e Kaneko and Zagier introduced a modular differential operator®

and the above identities show L5 14F > 0 and L5 14G = 0.

e Similar proof also works for d = 8 case: we have

5
Ly 10F = 93F — ¢ EaF = 172800445 > 0,

5
L210G = 02,G — cEaG = —640AH; <0

and this gives 622£1’0 = £270 > 0.

3Supersingular j-invariants, hypergeometric series, and Atkin’s orthogonal
polynomials, 1998
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d = 24 inequalities: “harder”

We have one more inequality left:

F(i/t) 432 G(i/t) 725760 ., 10
th(‘A(f/t)z ﬂA(i/t)?)Z . C (“%)

for t > 1. Note that 0 < t < 1 case follows from “hard” inequality.
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d = 24 inequalities: “harder”

LHS is positive (for all t > 0) due to “hard” inequality, and RHS is
nonpositive for t < %. Hence it is enough to prove the inequality
for t > %.

Now, the follwoing simple inequality removes exponential term:
Proposition

For all t > 0, A(it) < e™2™t,
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d = 24 inequalities: “harder”

LHS is positive (for all t > 0) due to “hard” inequality, and RHS is
nonpositive for t < %. Hence it is enough to prove the inequality
for t > %.

Now, the follwoing simple inequality removes exponential term:
Proposition

For all t > 0, A(it) < e™2™t,

Proof.

A(it) _ ef27rt H(l - ef27rnt)24 < ef27rt'
n>1
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d = 24 inequalities: “harder”

Using the above inequality & substitute t with 1/t, the inequality
reduces to

32 F(it)
w2 G(it) —

725760A(it) (1 10
G(it) wt3  w2t2

3
for0<t<1—0.
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d = 24 inequalities: “harder”

Using the above inequality & substitute t with 1/t, the inequality
reduces to

32 F(it)
w2 G(it) —

725760A(it) (1 10
G(it) wt3  w2t2

for0<t< %. Ok Sage, please tell me something again...
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d = 24 inequalities: “harder”

—LHS(t)
404 —RHS(t)
-g(t] = LHS|t) - RHS(t)

304
204

104

0.4

0.2 0.3

=104

—201
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d = 24 inequalities: “harder”

From this, we can try to prove:

Proposition

The function

(1) 432 F(it) 725760A(ie) (1 10
W= G(it) G(it) T3 3mw2t2

is monotone increasing in t for 0 < t < % and lim;_,o+ g(t) = 0.

g 3
Especially, we have g(t) > 0 for all 0 < t < 7.

As before, limit part is easy and left as an exercise for you.
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d = 24 inequalities: “harder”

Direct computation shows that dg/dt > 0 is equivalent to
L10(it) — 725760A(it) [(012G)(it) (33 — 522) — G(it) (537 — 503) ] > O.

If we denote above as £; .0, then L’(3’”) > 0 and it is enough to
prove 030L1 o(it)y>0for0 <t < 1 . Surprisingly, AG factors out
and it reduces to the positivity of

. it)— it)?
7560Xg 2(it) — A0 %45( 2 (i - 3r2t2) Ex(it) (4r2t4 - 3713t3) + (Tr%ﬁ - ﬁ) :

wt3
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d = 24 inequalities: “harder”

7560 (it) — S EE-Ealit) (1 10.) — Ex(it) (53

Tt3 3722

If we denote this as h(t), then t=8h(1/t) can be written as

1 1 . 1 3 1 . 3 .
?h <t> = 7560X872(It)+ﬁ |:(10 — 7Tt) Jl(lt) + EJZ(”:)

5 1 1
— 2B _"E+-E
V] 3 b 42+44
»=E —Es
9 9
— , R —
J3=3E, + 10E6 10E4

so it is enough to prove Ji(it) >0 for 1 < 3T « ¢ > 10,

ww — 30w) TG
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d = 24 inequalities: “harder”

We can compute Fourier coefficients of these forms explicitly, and
prove that J; and J, are completely positive. For J3, we have
k= Zn21 an,q” with a3 > 0 and a, < 0. Hence

t s &>t J3(it) = a; + Z ape 2™t

n>1
is increasing, and
27t . 27 . 27 3 9 . .
et (it) > eT (i) =e == 19 E4(i) > 0= J3(it) > 0
T
for t > 1, hence for t > %. OJ

69



Further thoughts
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Further thoughts

e What are the (completely) positive forms?

e Counting functions? (Kaneko—Zagier) d-th coefficient of Xs 3
counts the number of simply ramified coverings of genus 2 and
degree d of an elliptic curve over C.

e Geometric meaning? (Movasati) Quasimodular forms can be
interpreted as sections of jet bundles on modular curves.

e What are the “generators’ of QM . and QM| ?

e Positivstellensatz of quasimodular forms?
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e Any results that are “uniform” in dimensions?

e Make a formalization of the proof (e.g. in Lean) easier?
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e What are the (completely) positive forms?

e Counting functions? (Kaneko—Zagier) d-th coefficient of Xe 3
counts the number of simply ramified coverings of genus 2 and

degree d of an elliptic curve over C.
e Geometric meaning? (Movasati) Quasimodular forms can be
interpreted as sections of jet bundles on modular curves.
e What are the “generators” of Q./\/l;s and QMI,TS?
e Positivstellensatz of quasimodular forms?
e Possible applications in other LP problems?
e Dual LP, uncertainty principle, etc.

e Any results that are “uniform” in dimensions?

e Make a formalization of the proof (e.g. in Lean) easier?

[l © thefundamentaltheor3m |/ Sphere-Packing-Lean & (W|P)
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Paper: arxiv.org/abs/2406.14659
Code: github.com/seewoo5/posqmf

Thank you!
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