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My research centers on number theory, particularly delving into the realms of automor-
phic forms and the (relative) Langlands program, leveraging computational tools to enhance
exploration and understanding.

Relative Langlands program

Introduced by Robert Langlands, the Langlands Program constitutes a comprehensive unifi-
cation theory in number theory and beyond, seeking to establish connections between auto-
morphic forms / representations and Galois representations. Specifically, for an “algebraic”
automorphic representation π of a group G(AQ), it is conjectured that there exists an as-
sociated Galois representation ρπ : Gal(Q/Q) → Ǧ(k), where k can be C or Qℓ, such that
the automorphic L-function L(s, π) coincides with the Artin L-function L(s, ρπ). Here, Ǧ
denotes the Langlands dual group of G. The case where G = GL1 is well understood through
class field theory, and for G = GL2, the conjecture is proven when π is associated with holo-
morphic modular forms, culminating in the celebrated modularity theorem by Wiles, Taylor,
and others, which played a key role in the proof of Fermat’s Last Theorem.

Recently, there has been growing interest in the relative Langlands program, which seeks
to extend the classical Langlands program to spherical varieties [44, 45]. A major goal of
this program is to systematically address the many instances of identities between automor-
phic periods and special values of L-functions (Ichino–Ikeda type formula [27]), as seen in
the works of Hecke, Iwasawa–Tate, Rankin–Selberg, Godement–Jacquet, Ichino–Ikeda, and
Lapid–Mao. Moreover, Ben-Zvi, Sakellaridis, and Venkatesh have put forward a conjectural
duality within the relative Langlands program [4]. This duality suggests that for a Hamilto-
nian G-space G ↷ M , one should expect a corresponding dual pair Ǧ ↷ M̌ , where a dual
identity between automorphic periods and special values of L-functions arises by exchanging
the roles of (G,M) and (Ǧ, M̌).

Mao–Rallis trace formula for dual pairs

I am working on a conjectural identity relating automorphic periods and L-values for the
dual pairs introduced by Mao and Rallis [40]. For simple, split, and simply-laced groups
G′, excluding type An, Mao and Rallis construct a dual pair (SL2, G) within G′ by utilizing
Heisenberg groups associated withG′. This includes cases such as (SL2, SL6) within E6. They
proposed conjectural relative trace formulae for these dual pairs, suggesting that period
integrals of automorphic forms on G (resp. SL2) should correspond to special L-values
associated with automorphic representations of SL2 (resp. G). In their work, they established
the fundamental lemma for unit elements in the Hecke algebras of both G and SL2.

Recently, Mao, Wan, and Zhang [41] formulated a refined version of this conjecture, in
the form of an Ichino–Ikeda type formula, within the framework of the relative Langlands
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program [4]. They also proved smooth transfer for local functions at non-Archimedean
places. In collaboration with Yuchan Lee, we are working to complete the comparison of the
relative trace formula for the case (SL2, SL6), focusing on proving the fundamental lemma for
the full Hecke algebras, establishing smooth transfer at Archimedean places, and analyzing
the spectral decomposition of the relative traces. Together with the result of Lapid–Mao
[31] on Whittaker–Fourier coefficients, this would confirm one direction of the non-refined
conjecture: if Π is a cuspidal automorphic representation of SL2 and π is its functorial lift
to G via the L-group morphism PGL2 → LG, then the Mao–Rallis automorphic period is
nonzero if the adjoint L-value L(1,Π,Ad) is nonzero. Additionally, we aim to prove the
refined formula by establishing local relative character identities and combining them with
the refined identity of Lapid–Mao for SL2. It is worth noting that this refined formula is
”dual” to the conjectural formula for the Ginzburg–Rallis periods and the exterior cube
L-values of PGL6 [22].

Ichino–Ikeda formula for general spin groups (Bessel case)

Building upon the groundwork laid by Liu [39] on the special orthogonal groups (SO2 ×
SO5 and SO3 × SO6) and drawing insights from Emory’s work [19] on general spin groups
(GSpinn×GSpinn+1 for n = 2, 3, 4), I am working on the Ichino–Ikeda conjecture for general
spin groups, particularly in cases involving general Bessel periods. Furthermore, I’m trying to
generalize Furusawa and Morimoto’s work on the SO2×SO2n+1 case and Böcher’s conjecture
[21] in this direction. My approach involves leveraging exceptional isomorphisms between
low-rank general spin groups and other classical groups and reducing the conjecture to the
already known cases.

Computational Approach in Number Theory

In the realm of the Langlands Program, dealing with abstract objects like Galois represen-
tations and automorphic forms often benefits from grounding these concepts in tangible,
computable counterparts. Especially, these “classical” objects (e.g. modular forms and
Maass wave forms, instead of automorphic representations of GL2(AQ)) are usually easy to
compute explicitly with help of computer algebra systems like SageMath [48] or MATLAB
[28].

Modular forms and optimal sphere packings

The optimal sphere packing problem seeks the densest arrangement of unit balls in d-dimensional
space Rd. While the problem is trivial for d = 1, the two-dimensional case was solved by
Thue in 1890. The three-dimensional case, known as Kepler’s conjecture, was settled by
Thomas Hales in 2005 using extensive computer calculations [25], with the formal verifica-
tion completed nearly a decade later through the use of proof assistants HOL Light and
Isabelle [24].
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An unexpected link between the 8- and 24-dimensional sphere packing problems and
number theory emerged through the work of Cohn and Elkies, who introduced the linear
programming bound [13]. This approach hinted that finding specific “magic functions” could
unlock optimal sphere packings in these dimensions. However, constructing such functions,
which must satisfy constraints on both the function and its Fourier transform, is challenging
due to the uncertainty principle. Maryna Viazovska made a breakthrough by using modular
forms to construct the magic function for dimension 8 [49], and similar methods soon resolved
the case for dimension 24 [14].

To prove these two cases, the authors [49, 14] relied on numerical approximations and
extensive computer assisted computations to establish desired inequalities between modular
forms, and it is natural to ask if there is a more general and conceptual proof for these
inequalities. While a more direct proof exists for the dimension 8 case by Dan Romik
[43], I have found algebraic proofs for both the 8- and 24-dimensional cases that avoid
reliance on numerical approximations [35]. In my work, I developed a theory of positive
and completely positive quasimodular forms, which I used to study the magic modular forms
appearing in the optimal sphere packing problem. Additionally, I discovered connections to
Kaneko and Koike’s extremal quasimodular forms [30], which are conjectured to have non-
negative Fourier coefficients. A key aspect of my approach involves leveraging the differential
equations satisfied by these modular forms. My work opens new possibilities for generalizing
Viazovska’s construction to dimensions beyond 8 and 24, based on Fourier eigenfunctions
constructed by Feigenbaum, Grabner, and Hardin [20]. In particular, this could lead to a
new upper bound for the uncertainty principle in specific dimensions [5]. Furthermore, as a
byproduct of my research, I proved Kaneko and Koike’s conjecture regarding the positivity
of Fourier coefficients for extremal forms in the case of depth 1 [30].

These proofs were inspired by extensive experiments using SageMath. Notably, after ob-
serving the plot of the quotient of two modular forms (Figure 1), I realized the key properties
to prove - monotonicity and the limit as t → 0+ - both of which turned out to hold true
(Propositions 5.1 and 5.2 of [35]).

Maass wave forms, Quantum modular forms, and Hecke operators

In [12], Cohen constructed the first explicit example of a Maass wave form, based on one of
Ramanujan’s q-series. The coefficients of this form are related to a Hecke character of the
real quadratic field Q(

√
6), and Cohen conjectured that this Maass wave form is an eigenform

for suitable Hecke operators. However, the usual Hecke operators are not appropriate in this
case, as the multiplier system (Nebentypus) of Cohen’s Maass wave form does not arise from
Dirichlet characters.

In my undergraduate and master’s thesis, I proposed a correct definition of Hecke oper-
ators that applies to more general multiplier systems, including Cohen’s Maass wave form.
I further proved that this Maass wave form is indeed an eigenform under these operators
[33, 34]. Additionally, one can associate quantum modular forms to the Maass wave form via
period integrals, following the work of Lewis and Zagier [37, 51], and I demonstrated that
this map is Hecke-equivariant. As a result, this leads to nontrivial identities between certain
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Figure 1: Graph of the quotient F (it)/G(it) of two modular forms as a function in t > 0.

p-th roots of unity and the p-th coefficients of the Maass wave form for primes p. The same
argument applies to the Maass wave form of Li, Ngo, and Rhoades [38].

Other Projects

My interest is not restricted to number theory. I’m interested in various subjects, including

• formalization of mathematics,

• discrete geometry,

• homomorphic encryption.

Formalization of polynomial FLT and sphere packing in R8

The formal verification of mathematical proofs is a rapidly growing field aimed at ensuring
the correctness of mathematical results. A number of significant mathematical objects and
proofs have been formalized, including Hales’ proof of Kepler’s conjecture [24], schemes
[8], perfectoid spaces [7], and Gowers, Green, Manners, and Tao’s proof of the polynomial
Freiman–Ruzsa conjecture [23, 47].

One notable ongoing project is the formalization of the proof of Fermat’s Last Theorem
in Lean 4, led by Kevin Buzzard [6]. Given the complexity of the proof and the advanced
mathematics required, many of which are not yet in Lean’s mathlib4 library [15], it is esti-
mated that the complete formalization could take over 10 years. In contrast, the polynomial
version of Fermat’s Last Theorem is much simpler to prove, and a more general result, known
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as the Mason–Stothers theorem, provides an analogue of the ABC conjecture for polynomials
[46, 42].

In collaboration with Jineon Baek, we give a complete formalization of the Mason–
Stothers theorem in Lean 4 [3]. While the theorem has previously been formalized in HOL
by Eberl [18] and in Lean 3 by Wagemaker [50], our work provides a detailed comparison
with these prior formalizations [3, Section 7]. We are also in the process of integrating our
formalization into the mathlib4 library, with the code available at:

https://github.com/seewoo5/lean-poly-abc

Additionally, I am working on a project to formalize Viazovska’s proof of the optimal
sphere packing in R8 [49] in Lean 4, alongside a team led by Sidharth Hariharan, which
includes Chris Birkbeck, Gareth Ma, and Maryna Viazovska. This effort may also involve
formalizing my algebraic proof of the modular form inequalities [35], which would allow us
to bypass the need for formalizing various aspects of numerical analysis and the Hardy–
Ramanujan formula. So far, we have completed the formalization of the E8 lattice and its
density, and are now working on formalizing the Cohn–Elkies bound and the foundational
theory of (quasi)modular forms.

Conway–Soifer conjecture - homothetic case

Consider an equilateral triangle with side length n+ ε, where n ≥ 1 is an integer and ε > 0
is sufficiently small. What is the minimum number of unit equilateral triangles required to
cover this larger triangle? By considering the area, it is straightforward to show that at least
n2 + 1 unit triangles are necessary. Conway and Soifer provided two different ways to cover
the large triangle using n2 + 2 unit triangles [16] and conjectured that this is the minimum
number needed.

In collaboration with Jineon Baek, we proved that this conjecture holds if we restrict
the covering to homothetic triangles, i.e., when the sides of the unit triangles are parallel to
those of the large triangle (aligned either as △ or ▽) [2]. Specifically, we established the
following general result:

Theorem (Baek–L.). A triangle is called a horizontal triangle of base b and height h if one
of its sides of length b is parallel to the x-axis, and its height h is measured along the y-axis.
Then n2 + 1 horizontal triangles of base b and height h cannot cover a horizontal triangle of
base nb and height greater than nh.

Our proof is elementary, and we also determined the largest possible values of ε such that
an equilateral triangle of side length n+ε can be covered by either n2+2 or n2+3 homothetic
unit triangles. Specifically, these values are ε = 1/(n + 1) and ε = 1/n, respectively. We
believe that our method can be generalized to higher dimensions or extended to determine
the largest side length of an equilateral triangle that can be covered by n2 + k homothetic
unit triangles for 1 ≤ k ≤ 2n.
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Encrypted transfer learning with homomorphic encryption

During my alternative military service as a Research Engineer at CryptoLab, I developed
a privacy-preserving machine learning library called HEaaN.SDK [1], based on the Cheon–
Kim–Kim–Song (CKKS) homomorphic encryption (HE) scheme [9]. The CKKS scheme
theoretically allows arbitrary arithmetic computations on encrypted real and complex num-
bers (with small errors), which might lead one to believe that implementing machine learning
algorithms using HE is straightforward. However, encrypted computations are significantly
slower than plaintext computations, and naive implementations can be highly impractical
due to performance bottlenecks. To address this, algorithms need to be redesigned in an
HE-friendly way, which is often a complex research problem.

One key challenge I encountered was the lack of HE-based algorithms for multiclass
classification tasks; most prior work focused on binary classifications with a limited number
of features. Implementing a multiclass classification algorithm using HE required overcoming
two major obstacles: (1) efficiently performing encrypted softmax computations with large
inputs and (2) executing large-scale encrypted matrix multiplications.

These challenges were addressed in HETAL (Homomorphic Encryption-based Transfer
Learning) [36]. For softmax computation, we used homomorphic comparison techniques [10]
to normalize inputs by subtracting the maximum value, followed by homomorphic domain
extension [11], which significantly reduced errors and expanded the input range compared
to previous approaches [29, 32, 26]. To optimize matrix multiplications, we implemented
two distinct multiplication methods: AB⊺ and A⊺B which allowed us to bypass the costly
transpose operation. We further employed tiling and complex packing techniques to minimize
the number of required rotations, resulting in matrix multiplication algorithms that were 1.8
to 323 times faster than previous methods [17, 29]. As a result, we successfully fine-tuned
commonly used vision and language models within an hour on five benchmark datasets,
using a single A40 GPU. This demonstrated that HE-based encrypted fine-tuning is not
only feasible but also practical for real-world applications.
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