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It is known that the among the n-spheres, only S0, S1 and S3 can admit a
Lie group structure, which is a highly nontrivial theorem. However, it may be
easier to prove that 2-sphere S2 can’t admit a Lie group structure. There are
several ways to prove this, and we are going to introduce two of them.

1 Hairy ball theorem

First proof uses an interesting theorem in algebraic topology called Hairy ball
theorem. Such theorem can be observed when we comb hair of our pets, or any
other things that are homeomorphic to S2 and hair on it. (Maybe some of you
will claim that pets are homeomorphic to a 3-dimentional ball, or even some
other 3-manifolds that has some holes. This is completely true in anatomically,
but we aren’t biologists, at least I think, so we will consider our pets as S2 for
a moment.)

Now Hairy ball theorem is the following:

Theorem 1. There’s no non-vanishing tangent vector field on S2.

This implies that whenever we try to comb our pets, if they have hair on
every points on surface, then there will always be at least one tuft of hair at
one point on the ball. (Note that this true for all even-dimensional spheres, and
false for odd dimensional spheres. You can easily find a non-vanishing tangent
vector fields on them.) Here we will introduce a really short proof from Peter
McGrath [1].

Proof. Before we start, we note that a rotation number of a closed plane curve
γ : [0, 1]→ R2 is defined as a winding number of γ̇, which is 1/2π times change
of an oriented angle of γ̇.

Suppose that S2 admits a continuous non-vanishing vector field v, and we
can assume that v has a unit length everywhere by replacing v with v/|v|.
Now we will define a rotation number of a given closed curve on S2. Fix an
orientation of R3 given by an ordered basis {e1, e2, e3}. For any given point
p ∈ S2 and a unit tangent vector w ∈ TpS2, we can find a unique vector w⊥

such that {w,w⊥,p} is positively oriented. Now define Φw,p as an isometry
that sends p to 0 and send {w,w⊥,p} ⊂ TpR3 to {e1, e2, e3} ⊂ T0R3. Then
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we define the rotation number of γ ⊂ S2 with respect to v as a rotation number
of the curve Φγ,v(γ)(γ̇) ⊂ {(x, y, z) : z = 0} ' R2.

Consider the family of a regular smooth curves in S2 defined as Cp,s :=
{q ∈ S2 : 〈p,q〉 = s} for p ∈ S2 and −1 < s < 1, oriented so that p is . This
are circles on S2, and all of them are regularly homotopic, so they have a same
rotation number n. If we consider Cp,0 and C−p,0, they define a same great
circle with opposite directions, so n = −n and n = 0. However, if we consider
the rotation number of Cp,s where s is close to 1, is close to the rotation number
of a circle in the plane since v is close to v(p) on Cp,s by continuity. Hence
n ∈ {−1, 1} and we get a contradiction.

We need a simple lemma to finish the proof of our claim.

Lemma 1. Let G be a Lie group. Then there exists a non-vanishing tangent
vector field on G.

Proof. Choose any nonzero vector v in TeG, where e ∈ G is an identity. For
any g ∈ G, consider the left translation φg : G → G, x 7→ gx, which is a
diffeomorphism of G. This induces an isomorphism dφg : TeG → TgG, which
maps v to another nonzero vector φg(v) ∈ TgG. Then {φg(v)} defines a smooth
tangent vector field on G, which is nonzero anywhere.

Hence S2 doesn’t admit a Lie group structure.

2 Lefschetz fixed point theorem

For the second proof, we will prove the following theorem.

Theorem 2. Let G be a compact connected Lie group. Then χ(G), the Euler
characteristic of G, is zero.

To prove this, we need Lefschetz fixed point theorem.

Theorem 3 (Lefschetz fixed point theorem). Let f : X → X be a continuous
map from a compact triangulable space X to itself. Define a Lefschetz number
Λf of f by

Λf :=
∑
k≥0

(−1)kTr(f∗|Hk(X,Q)),

the alternating (finite) sum of the matrix traces of the linear maps induced by
f on the Hk(X,Q), the singular homology of X with rational coefficients. Then
if Λf 6= 0, f has at least one fixed point.

We will only sketch a proof of the theorem. For the full proof, you may see
Isabel Vogt’s notes [2].

sketch of proof. Let f : X → X be a continuous map with no fixed points. By
simplicial approximation theorem, possibly after subdividing X, f is homotopic
to a fixed-point-free simplicial map g, which means that it sends each simplex to
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a different simplex. One can check that the Lefschetz number Λg of g can be also
computed using the alternating sum of the matrix traces of the aforementioned
linear maps, and so it is zero since it is a fixed-point-free map and its diagonal
elements are all zero. Since the Lefschetz number Λf is a homotopy invariant,
we get Λf = 0 for the original f .

Now using this, we can prove the original claim. First, by definition, the
Lefschetz number of an identity map is same as Euler characteristic χ(G) of G,
since Tr(f∗|Hk(X,Q) should be same as dimQHk(X,Q), the k-th betti number
of X. Now choose a nontrivial element g ∈ G and consider the left multiplication
map mg : G → G, x 7→ gx, which is a diffeomorphism of G. Clearly, this is a
fixed-point-free map and so Λmg

= 0. By the way, the identity map and the
map mg are homotopic (since G is a connected manifold, it is a path-connected
and we can find a path γ : [0, 1] → G with γ(0) = e and γ(1) = g. Then the
map M : [0, 1]×G→ G,M(t, x) := γ(t)x gives a homotopy between the identity
map id = me and mg.), we have 0 = Λmg

= Λid = χ(G).
Since χ(S2) = 2, it can’t admit a Lie group structure. More generally,

χ(S2n) 6= 0 for n ≥ 1, so S2n can’t be Lie groups.
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