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1 Introduction

Spin group is a universal cover of an orthogonal group. In this note, we will
show that low dimensional complex spin groups are isomorphic to

Spin(3,C) ≃ SL(2,C)
Spin(4,C) ≃ SL(2,C)× SL(2,C)
Spin(5,C) ≃ Sp(4,C)
Spin(6,C) ≃ SL(4,C).

For each case, we’ll approach in the following way. To prove Spin(n,C) ≃ G
for some G, we’ll first “compute” the group SO(n,C) first, i.e. find another
group G′ isomorphic to SO(n,C). To do this, we construct nondegenerate
bilinear forms and the corresponding quadratic forms Q explicitly for each
n ∈ {3, 4, 5, 6}. Then we construct G′-action on the quadratic space, preserving
the quadratic, so we get a map G′ → SO(Q) ≃ SO(n,C), and show that the
map is an isomorphism. Then G would be the universal cover of G′.

Note that we only need to find a bilinear form, since every nondegenerate
quadratic spaces over an algebraically closed fields are isomorphic. For the
general theory of quadratic spaces, see [3].

2 Spin(3,C) ≃ SL(2,C)
First, we are going to prove the following theorem:

Theorem 1.
PSL(2,C) ≃ SO(3,C)

Using this Theorem, we can prove that Spin(3,C) is isomorphic to a well-
known group.

Corollary 1.
Spin(3,C) ≃ SL(2,C)
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Proof. First, we have to show that SL(2,C) is a simply connected group. To
prove this, consider a natural action SL(2,C) on C2\{0}. Then this is a transi-
tive action and the stabilizer subgroup of e1 = (1, 0)T is

Stab(e1) =

{(
1 z
0 1

)
: z ∈ C

}
≃ C.

Hence we have a diffeomorphism

SL(2,C)/Stab(e1) ≃ C2\{0}.

We know that C2\{0} is homotopic to S3, which is simply connected. Also,
since Stab(e1) ≃ C is contractible, SL(2,C) is homotopic to S3, so is sim-
ply connected. Now we have a 2-cover SL(2,C) ↠ PSL(2,C) ≃ SO(3,C), so
SL(2,C) is a universal cover of SO(3,C).

So, how we can prove the Theorem 1? Actually, there is a one line proof:

proof of the Theorem 1. The map Φ : SL(2,C) → SO(3,C) defined as

(
a b
c d

)
7→

 1
2 (a

2 − b2 − c2 + d2) −(ab− cd) i
2 (a

2 + b2 − c2 − d2)
−(ac− bd) ad+ bc −i(ac+ bd)

− i
2 (a

2 − b2 + c2 − d2) i(ab+ cd) 1
2 (a

2 + b2 + c2 + d2)


is a surjective homomorphism whose kernel is the center of SL(2,C).

One may ask where does the isomorphism come from, which looks quite
unnatural. It is not even trivial that ϕ is a group homomorphism and surjective.
We will construct such homomorphism by using the adjoint action of a Lie group
on a Lie algebra.

Let sl(2,C) be a Lie algebra of SL(2,C). This is a 3-dimensional complex
vector space with a basis

E =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)
.

Let G = SL(2,C). Consider a left G-action on G itself by a conjugation, i.e.
g ∈ G acts on G by h 7→ ghg−1. Then we have an induced action of G on its
Lie algebra g = sl(2,C) by conjugation v 7→ gvg−1 again. Hence we get an
adjoint representation ad : G → GL(g) of G, and we will analyze this map more
rigorously.

Let

g =

(
a b
c d

)
∈ SL(2,C).
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Then its action on E,H,F is given by

E 7→ gEg−1 =

(
−ac a2

−c2 ac

)
H 7→ gHg−1 =

(
ad+ bc −2ab
2cd −(ad+ bc)

)
F 7→ gFg−1 =

(
bd −b2

d2 −bd

)
so the automorphism ϕg : sl(2,C) → sl(2,C) corresponds to the g can be repre-
sented as a 3 by 3 matrix

ϕg =

 a2 −2ab −b2

−ac ad+ bc bd
−c2 2cd d2


with respect to the ordered basis {E,H,F} of sl(2,C). We have det(ϕg) = 1: if
we expand determinant by the second row, we have

det(ϕg) = ac(−2abd2 + 2cdb2) + (ad+ bc)(a2d2 − b2c2)− bd(2a2cd− 2c2ab)

= −2abcd+ (ad+ bc)2 − 2abcd = (ad− bc)2 = 1.

Now define an inner product on sl(2,C) by ⟨v, w⟩ = Tr(vw), which is clearly
C-bilinear. The associated quadratic form is

Q1(v) = ⟨v, v⟩ = Tr(v2) = 2(y2 + xz)

for v = xE + yH + zF , and this is a nondegenerated quadratic form. Clearly,
this inner product and the quadratic form is invariant under the G-action:

⟨ϕg(v), ϕg(w)⟩ = Tr(gvg−1gwg−1) = Tr(gvwg−1) = Tr(vw) = ⟨v, w⟩.

Hence image of the map g 7→ ϕg lies in SO(Q1), special orthogonal group which
preserves the quadratic form Q1. If we denote Q2 as a standard quadratic form
defined as Q2(xE + yH + zF ) = x2 + y2 + z2, a basis change matrix

B =


1√
2

0 i√
2

0 1√
2

0
1√
2

0 − i√
2


relates two quadratic forms as Q2(v) = Q1(Bv). Since SO(Q2) = SO(3,C),
we have an isomorphism SO(Q1) ≃ SO(3,C) given by A 7→ B−1AB. Explicit
computation gives us that

B−1ϕgB =


1√
2

0 1√
2

0
√
2 0

− i√
2

0 i√
2


 a2 −2ab −b2

−ac ad+ bc bd
−c2 2cd d2




1√
2

0 i√
2

0 1√
2

0
1√
2

0 − i√
2


=

 1
2 (a

2 − b2 − c2 + d2) −(ab− cd) i
2 (a

2 + b2 − c2 − d2)
−(ac− bd) ad+ bc −i(ac+ bd)

− i
2 (a

2 − b2 + c2 − d2) i(ab+ cd) 1
2 (a

2 + b2 + c2 + d2)


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which gives the previous homomorphism SL(2,C) → SO(3,C).
Since SO(Q1) ≃ SO(3,C), kerΦ is same as kerϕ. If ϕg = id, then we

should have b = c = 0 and a2 = d2 = ad = 1. So the only possible choice is
(a, d) = (1, 1) or (−1,−1), which corresponds to elements in the center. Hence
we have an induced map PSL(2,C) → SO(3,C), which is an embedding.

We need to show that this map is an isomorphism. First, both have dimen-
sion 3: since SL(2,C) → PSL(2,C) is a finite cover, both group have a same
dimension, which is 3 since dimC sl(2,C) = 3. For SO(3,C), one can check that
so(3,C) = {X ∈ M3×3(C) : XT +X = 0}, and this space also has dimension 3
over C. We need the following lemma:

Lemma 1. Let G be a conneted Lie group of dimension n and H be a Lie
subgroup of G with same dimension. Then G = H.

Proof. Since H ⊆ G is a Lie subgroup, G/H has a smooth manifold structure.
Since dimG = dimH, dim(G/H) = 0 and thus G/H is a 0-dimensional smooth
manifold, i.e. a set of points endowed wit a discrete topology. Since G =∐

g∈G/H gH, G is not connected if G ̸= H.

By lemma, it is enough to show that SO(3,C) is connected. Actually, we
can prove more general result:

Lemma 2. SO(n,C) is connected for n ≥ 1.

Proof. Clearly, SO(1,C) = {1} is connected. We will use induction on n. As-
sume that SO(n− 1,C) is connected for some n ≥ 2. Let

Xn = {(x1, . . . , xn) ∈ Cn : x2
1 + · · ·+ x2

n = 1}.

g ∈ SO(n,C) acts on X as v 7→ gv. If ge1 = e1 for e1 = (1, 0, . . . , 0)T , since
g ∈ SO(n,C), g should has a form

g =

(
1 0T

0 g′

)
where g′ ∈ SO(n−1,C). Thus Stab(e1) ≃ SO(n−1,C). Also, we can show that
the action is transitive, hence we have SO(n,C)/SO(n−1,C) ≃ Xn. It is known
that Xn is connected, so SO(n,C) is also connected since both SO(n−1,C) and
Xn are connected. (First one is because of the induction hypothesis and the
Lemma 3 in the Appendix. For the second one, in general, for any irreducible
polynomial f(x1, . . . , xn) ∈ C[x1, . . . , xn], zero set of f in Cn is connected with
respect to the usual topology on Cn, which is hard to prove in general.)

Thus we get PSL(2,C) ≃ SO(3,C) with an explicit isomorphism. Since
SL(2,C) is a double cover of PSL(2,C) and is simply connected, we just showed
that the complex spin group Spin(3,C) is SL(2,C).
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3 Spin(4,C) ≃ SL(2,C)× SL(2,C)
By the similar way, we can also show the following:

Theorem 2.

(SL(2,C)× SL(2,C))/⟨(−I,−I)⟩ ≃ SO(4,C).

Corollary 2.
Spin(4,C) ≃ SL(2,C)× SL(2,C).

Proof. By the Theorem 2, there exists a surjective homomorphism SL(2,C) ×
SL(2,C) → SO(4,C), which is a double cover of SO(4,C). Since SL(2,C) is
simply connected, SL(2,C)× SL(2,C) is also simply connected.

To prove the Theorem 2, we need construct a 4-dimensional quadratic space
over C where SL(2,C) × SL(2,C) acts on and preserves the quadratic form.
Consider the action of the group on a space M2×2(C) (the space of complex
2× 2 matrices) defined as

(g, h) · v := gvh−1, (g, h) ∈ SL(2,C)× SL(2,C), v ∈ M2×2(C).

Then this is a well-defined action on M2×2(C). With respect to the basis
{e11, e12, e21, e22}, the map ϕg,h : M2×2(C) → M2×2(C) corresponds to a 4× 4
matrix

Ag,h =


aδ −aγ bδ −bγ
−aβ aα −bβ bα
cδ −cγ dδ −dγ
−cβ cα −dβ dα

 , g =

(
a b
c d

)
, h =

(
α β
γ δ

)
∈ SL(2,C).

We can check that det(Ag,h) = (ad− bc)(αδ − βγ) = 1, so the image of

ϕ : SL(2,C)× SL(2,C) → GL(M2×2(C))

is contained in SL(M2×2(C)). Now we need a bilinear map and a (non-degenerate)
quadratic form on M2×2(C) so that ϕg,h preserves the quadratic form. Define
Q : M2×2(C) → C as the determinant, i.e. Q(v) = det(v). Then we have

Q(ϕg,h(v)) = det(gvh−1) = det(g) det(v) det(h)−1 = det(v) = Q(v),

so it is preserved by the action. The corresponding bilinear form is

⟨v, w⟩ = 1

2
(Q(v + w)−Q(v)−Q(w))

=
1

2
(det(v + w)− det(v)− det(w))

=
1

2
(x1w2 − y1z2 + x2w1 − y2z1),
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where v = ( x1 y1
z1 w1

) and w = ( x2 y2
z2 w2

). Hence we obtain a map ϕ : SL(2,C) ×
SL(2,C) → SO(4,C). If (g, h) ∈ kerϕ, then gvh−1 = v for any v ∈ M2×2(C).
If we put v = h, we get g = h and gvg−1 = v. Thus g ∈ Z(M2×2(C)) = CI2.
Since det(g) = 1, we should have g = h = ±I2, and ϕ induces an injection

ϕ : (SL(2,C)× SL(2,C))/⟨(−I,−I)⟩ → SO(4,C).

One can check that both groups has dimension 6 (by computing dimensions of
Lie algebra of each groups), so ϕ is an isomorphism by the Lemma 1 and 2.

4 Spin(6,C) ≃ SL(4,C)
We are going to look at Spin(6,C) first, since Spin(5,C) is slightly more involved.
For Spin(6,C), we have the following isomorphism

Theorem 3.
PSL(4,C) = SL(4,C)/⟨−I⟩ ≃ SO(6,C).

Corollary 3.
Spin(6,C) ≃ SL(4,C).

Proof. In general, we can prove that SL(n,C) is simply connected for n ≥ 2. The
natural action of SL(n,C) on Cn\{0} is transitive, so we have a diffeomorphism

SL(n,C)/Stab(e1) ≃ Cn\{0}.

We know that Cn\{0} is homotopic to S2n−1, which is simply connected. Also,
we have

Stab(e1) =

{(
1 vT

0 g

)
: g ∈ SL(n− 1,C)

}
≃ SL(n− 1,C)⋊Cn−1

which is diffeomorphic to SL(n− 1,C)×Cn−1, so is homotopic to SL(n− 1,C).
Thus by induction with the Lemma 4, SL(n,C) is simply connected for any
n ≥ 2.

What is a 6-dimensional quadratic space over C with SL(4,C) action? SL(4,C)
naturally acts on C4, and this induces an action on ∧2C4, which has a dimension(
4
2

)
= 6. If we write e1, e2, e3, e4 for the standard basis, then the corresponding

“standard” basis of ∧2C4 as

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4.

The action of SL(4,C) on ∧2C4 is defined as

g(v1 ∧ v2) = gv1 ∧ gv2, g ∈ SL(4,C), v1, v2 ∈ C4.

It is easy to prove that this action has determinant 1. Recall that for any finite
d-dimensional C-vector space V , we have the determinant map det : GL(V ) →
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C× defined as g 7→ det(g) = ∧dg, where ∧dg is the induced map on ∧dV
which is isomorphic to C. Now we define SL(V ) = ker(det). In our case, for
g ∈ SL(4,C) = SL(C4), we have to check that ∧2g ∈ SL(∧2C4), which trivially
follows from ∧4g ∈ ker(det : GL(∧4C4) → C×): then ∧4g acts on ∧4C4 trivially,
and then ∧6(∧2g) = ∧3(∧4g) also acts on ∧6(∧2C4) trivially.

We define a natural bilinear pairing on ∧2C4 as

⟨v1 ∧ v2, w1 ∧ w2⟩ = v1 ∧ v2 ∧ w1 ∧ w2 ∈ ∧4C4 ≃ C, v1, v2, w1, w2 ∈ C4

This is a symmetric pairing on ∧2C4 since (13)(24) ∈ S4 is an even permutation.
In terms of the above standard basis, if we write eij := ei ∧ ej for 1 ≤ i < j ≤ 4
and v =

∑
1≤i<j≤4 aijeij , w =

∑
1≤i<j≤4 bijeij , then

⟨v, w⟩ = ⟨
∑

1≤i<j≤4

aijeij ,
∑

1≤i<j≤4

bijeij⟩

= (a12b34 + a34b12 − a13b24 − a24b31 + a14b23 + a23b14)e1 ∧ e2 ∧ e3 ∧ e4.

This pairing can be considered as a determinant of the matrix with column
vectors v1, v2, w1, w2, and linearly extends to ∧2C4. In other words, we have

v1 ∧ v2 ∧ w1 ∧ w2 = det(A)e1 ∧ e2 ∧ e3 ∧ e4,

A =

 | | | |
v1 v2 w1 w2

| | | |

 .

Especially, the previous SL(4,C)-action preserves the bilinear form since det(gA) =
det(g) det(A) = det(A) for g ∈ SL(4,C). One can check that this is a nonde-
generate paring on ∧2C4, so we get a map

ϕ : SL(4,C) → SO(Q,∧2C4) ≃ SO(6,C)

where the correponding quadratic form Q on ∧2C4 is

Q(v) = ⟨v, v⟩ = 2(a12a34 − a13a24 + a14a23), v =
∑
i<j

aijeij .

To show that the kernel of ϕ is ⟨−I⟩, assume that g = (bij)1≤i,j≤4 ∈ SL(4,C)
trivially acts on ∧2C4. From ge1 ∧ ge2 = e1 ∧ e2, we get, for example, the
following equations:

b11b22 − b21b12 = 1

b11b32 − b31b12 = 0

b21b32 − b31b22 = 0

by comparing coefficients of each basis elements eij = ei ∧ ej (i < j). Then

b31 = b31b11b22 − b31b21b12 = b21b32b11 − b11b21b32 = 0.

Similarly, we can prove that all the off-diagonal entries of g are zero, and biibjj =
1 for all i < j gives b11 = b22 = b33 = b44 = ±1.
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5 Spin(5,C) ≃ Sp(4,C)
This is the most difficult one among 3, 4, 5 and 6, since we need to consider
symplectic structure. The standard symplectic form on C4 is a bilinear map
ω : C4 ×C4 → C which is anti-symmetic and nondegenerate. More explicitly, it
is defined as

ω(v1, v2) := vT1 Jv2, J =

(
O I2
−I2 O

)
, v1, v2 ∈ C4.

Since ω is anti-symmetric, we have an induced map ω : ∧2C4 → C. The standard
action of Sp(4,C) on C4 induces the action on the space ∧2C4 as before, and
its dual action on V ′ = HomC(∧2C4,C) defined as

(g · f)(v1 ∧ v2) = f(g−1v1 ∧ g−1v2), f : ∧2C4 → C.

We can easily check that ω is fixed by the action (in some sense, Sp(4,C) is
defined to be the group that fixes ω), and in fact, it is a unique such element in
V ′ up to constant multiplication. This would be the heart of the our following
proof.

Theorem 4.
PSp(4,C) = Sp(4,C)/⟨−I⟩ ≃ SO(5,C)

Corollary 4.
Spin(5,C) ≃ Sp(4,C).

Proof. It is enough to show that Sp(4,C) is simply connected. We use the argu-
ment of Eric Wofsey in [2]. Consider the standard action of Sp(4,C) on C4\{0}.
This action is transitive: choose any nonzero vector v = (a11, a21, c11, c21)

T ∈
C4. Note that the matrix g = (A B

C D ) is in Sp(4,C) if and only if

ATC = CTA, BTD = DTB, ATD − CTB = I.

Assume that (a11, a21) ̸= (0, 0). Then we can find a21, a22 ∈ C s.t. a11a22 −
a12a21 ̸= 0. Then we can also find c12, c22 ∈ C s.t.

a11c12 + a21c22 = a12c11 + a22c21,

which implies ATC = CTA for A = ( a11 a12
a21 a22

) and C = ( c11 c12
c21 c22 ). Now take

D = A−T = (A−1)T and B = O, then we have (A B
C D ) ∈ Sp(4,C). If (a11, a21) =

(0, 0), we have (c11, c21) ̸= (0, 0) and do the similar thing with D = O.
Now consider the diagonal action of Sp(4,C) on (C4\{0}) × (C4\{0}). We

will figure out what is the orbit and the stabilizer of the element (e1, e3) ∈
(C4\{0}) × (C4\{0}). First, assume that g ∈ Sp(4,C) fixes e1 and e3. Since
ω is preserved under the action, g must also fix their orthogonal complement
with respect to the symplectic form, which is Ce2⊕Ce4. So we can see that the
stabilizer group of (e1, e3) is isomorphic to Sp(2,C) = SL(2,C), which is simply
connected.
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For the orbit of (e1, e3), we just saw that Sp(4,C) acts on C4\{0} transitively,
so we can map e1 to the any vector in C4\{0}. Once we choose the image of e1,
then e3 may goes to some vector that lies on the affine space

S = {v ∈ C4\{0} : ω(ge1, v) = ω(e1, e3) = 1}

which is just C3 topologically. Hence our orbit space is a fiber bundle over
C4\{0} with fiber C3. Since both C4\{0} and C3 are simply connected, the
orbit space should be simply connected, too.

So both stabilizer and the orbit of (e1, e3) are simply connected, and so
Sp(4,C) too by the Lemma 4.

Now consider the non-degenerate bilinear paring on ∧2C4, defined as

⟨v1 ∧ v2, v3 ∧ v4⟩ = v1 ∧ v2 ∧ v3 ∧ v4 ∈ ∧4C4 ≃ C, vi ∈ C4 for 1 ≤ i ≤ 4.

Then we have an isomorphism

∧2C4 ≃ HomC(∧2C4,C), v1 ∧ v2 7→ ⟨v1 ∧ v2,−⟩

which is a Sp(4,C)-equivariant isomorphism, from the fact that Sp(4,C) ⊆
SL(4,C). (This was proven in the previous section.) Hence there exists a
nonzero vector vω in ∧2C4 which is fixed by the action that corresponds to
ω, and we can compute it explicitly - {ei ∧ ej}1≤i<j≤4 is a basis of ∧2C4, and if
we write dual basis of ei ∧ ej as (ei ∧ ej)

∗, then ω = (e1 ∧ e3)
∗ + (e2 ∧ e4)

∗ and
the corresponding element that fixed by Sp(4,C)-action is

vω = −e1 ∧ e3 − e2 ∧ e4.

So we have an induced action on the 5-dimensional vector space V = ∧2C4/⟨vω⟩,
which is the desired space that Sp(4,C) acts on. Now define a bilinear paring
on V as

⟨v1 ∧ v2, v3 ∧ v4⟩V := ω(v1 ∧ v3)ω(v2 ∧ v4)− ω(v1 ∧ v4)ω(v2 ∧ v3).

We can check that this is a well-defined on V by checking that ⟨vω, ei∧ej⟩V = 0
for any 1 ≤ i < j ≤ 4. Also, this is a Sp(4,C)-invariant bilinear paring since ω
does. By the Lemma 5 and the previous section, the action on V has determinant
1, hence the image of the representation Sp(4,C) ↪→ GL(V ) lies in SO(5,C).

To prove that the kernel of the map is ⟨−I⟩, assume that g ∈ Sp(4,C) is
in the kernel, so that gv1 ∧ gv2 = v1 ∧ v2 for all v1 ∧ v2 ∈ V . This means
that gv1 ∧ gv2 = v1 ∧ v2 + λvω for some λ ∈ C. Now define λij ∈ C as
gei∧gej = ei∧ej+λij(e1∧e3+e2∧e4). Let g = (bij)1≤i,j≤4. For (i, j) = (1, 3),
we get the following equations

b11b23 − b21b13 = 0

b11b33 − b13b31 = λ13 + 1

b11b43 − b41b13 = 0

b21b33 − b31b23 = 0

b21b43 − b41b23 = λ13

b31b43 − b41b33 = 0
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and by using the same trick as before, we get

(λ13 + 1)(b21, b23, b41, b43) = (0, 0, 0, 0)

λ13(b11, b13, b31, b33) = (0, 0, 0, 0).

Now we can prove that λ13 = 0 - if not, we must have b11 = b31 = b13 =
b33 = 0, and this gives a contradiction when we do the similar computation
for (i, j) = (1, 2) and (i, j) = (1, 4). (I’m not going to write down all the
equations since margin is too small to contain.) Hence we must have λ13 = 0
and b21 = b23 = b41 = b43 = 0. Similar argument shows that the off-diagonal
elements should be all zero, and the diagonal entries should satisfy biibjj = 1,
which implies b11 = b22 = b33 = b44 = ±1.

5.1 Appendix

Lemma 3. Let G be a Lie group and H be a closed Lie subgroup. If both H
and G/H are connected, then G is also connected.

Proof. Assume that G is not connected. Then there exists a proper clopen
subset U of G. Since H is connected, U is a union of some cosets of H, and then
U/H is a proper clopen subset of G/H, which contradicts to the connectedness
of G/H.

Lemma 4. Let G be a connected Lie group and H be a closed Lie subgroup. If
both H and G/H are simply connected, then G is also simply connected.

Proof. The canonical projection G → G/H is an H-fibration, so we obtain a
long exact sequence of homotopy groups

· · · → π2(G/H) → π1(H) → π1(G) → π1(G/H) → π0(H) → · · · .

Since both π1(H) and π1(G/H) are trivial, so is π1(G).

Lemma 5. Let V be a d-dimensional C-vector space and ϕ : V → V be the
invertible linear map, i.e. ϕ ∈ GL(V ). Assume that there exists a nonzero
vector v0 ∈ V which is fixed by ϕ. If ϕ ∈ SL(V ), then the induced map ϕ :
V/⟨v0⟩ → V/⟨v0⟩ also satisfies ϕ ∈ SL(V/⟨v0⟩).

Proof. Consider a basis B = {v0, v1, . . . , vd−1} which contains v0 ̸= 0. Then
B = {v1, . . . , vd−1} is a basis of V/⟨v0⟩. Since ϕ ∈ SL(V ), it acts on ∧dV
trivially, i.e.

ϕ(v0) ∧ ϕ(v1) ∧ · · · ∧ ϕ(vd−1) = v0 ∧ v1 ∧ · · · ∧ vd−1.

Since ϕ(v0) = v0, we have

v0 ∧ (ϕ(v1) ∧ · · · ∧ ϕ(vd−1)− v1 ∧ · · · ∧ vd−1) = 0,
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which implies that

ϕ(v1) ∧ · · · ∧ ϕ(vd−1)− v1 ∧ · · · ∧ vd−1 =

d−1∑
i=1

ci(v1 ∧ · · · ∧ v̂i ∧ vd−1)

for some c1, . . . , cd−1 ∈ C. Since the image of RHS in ∧d−1(V/⟨v0⟩) is 0, we
get Now we have to show that ϕ(v1) ∧ · · · ∧ ϕ(vd−1) = v1 ∧ · · · ∧ vd−1 and so
ϕ ∈ SL(V/⟨v0⟩).
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