Singular Algebraic Curves

Seewoo Lee

This note closely follows Chapter 4 of Serre's Algebraic Groups and Class Fields. We generalize the theory in Chapter 2 to nonsingular curves via normalization. We also associate a singular curve X_m to a modulus m of a nonsingular curve X, which will be used in the construction of generalized Jacobians later. Most of the theorems (Riemann–Roch, Serre duality) hold when we replace $\mathcal{L}(D)$ and $\underline{\Omega}(D)$ with appropriate notions $\mathcal{L}'(D)$ and $\underline{\Omega}'(D)$ for singular curves, and the genus g with *arithmetic* genus.

1 Structure of a singular algebraic curve

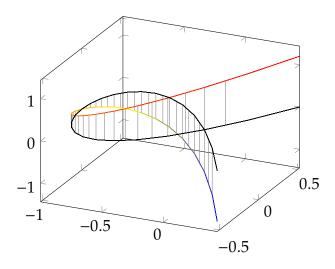
1.1 Normalization of an algebraic variety

For an irreducible algebraic variety X', *normalization* $X \to X'$ can be constructed locally as taking integral closure \mathcal{O}_Q of each \mathcal{O}'_Q in K = k(X'). For an affine open $U' \subset X'$ with $A' = \mathcal{O}'(U')$, the corresponding normal affine variety $U \to U'$ corresponds to an integral closure A of A' in K, and *glueing* these U give X. Let $\mathcal{O} = p_*(\mathcal{O}_X)$, whose stalks are $\mathcal{O}_Q = \bigcap_{P \to Q} \mathcal{O}_P$ and \mathcal{O}' is a subsheaf of \mathcal{O} . See this MO answer for the nice geometric intuitions of normal varieties.

Here's an example from Vakil's note: consider a *nodal curve* $X' : y^2 = x^3 + x^2$, singularity at (0, 0). One needs to normalize the ring $R = k[x, y]/(y^2 - x^3 - x^2)$. The element $t = y/x \in \operatorname{Frac}(R) = k(x, y)$ satisfies the integral equation $t^2 = x + 1$, and a corresponding variety $X = \{(x, y, t) : y^2 = x^3 + x^2, y = tx, t^2 = x + 1\}$ in \mathbb{A}^3 with a projection map $X \to X', (x, y, t) \mapsto (x, y)$. This gives a normalization of X', which is a nonsingular curve (which can be checked by computing it's Jacobian

$$J = \begin{pmatrix} -3x^2 - 2x & 2y & 0\\ -t & 1 & -x\\ 1 & 0 & -2t \end{pmatrix}$$

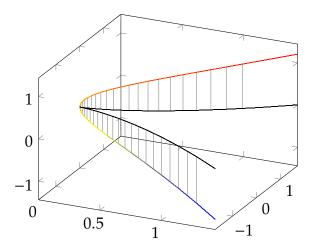
whose determinant is 0 and the first two columns are linearly independent, so has rank 2 = 3-1 and nonsingular. In fact, $X \simeq \mathbb{A}^1$ since $X = \{(t^2-1, t(t^2-1), t)\}$.



Another example is the curve with a *cusp*: $X' : y^2 = x^3$, singularity at (0, 0). We can normalize the ring $R = k[x, y]/(y^2 - x^3)$ similarly as $\tilde{R} = k[x, y, t]/(y^2 - x^3, t^2 - x, y - tx)$ (taking t = y/x), which corresponds to the curve $X = \{(x, y, t) : y^2 = x^3, t^2 = x, y = tx\} = \{(t^2, t^3, t)\}$. It's Jacobian is given by

$$J = \begin{pmatrix} -3x^2 & -2y & 0\\ 1 & 0 & -2t\\ -t & 1 & -x \end{pmatrix}$$

whose determinant is 0 and the first two columns are linearly independent, so has rank 2 = 3 - 1. In fact, we have $X = \{(t^2, t^3, t)\} \simeq \mathbb{A}^1$.



We denote as c for the annihilator of O/O', call it as the *conductor* of O into O'. It is a coherent sheaf of ideals on X' and its variety S' is a set of points on X'

which are not normal. Put $S = p^{-1}(S')$, so that p gives an isomorphism between $X \setminus S$ and $X' \setminus S'$, i.e. p is a birational morphism. For $Q \in X'$, $\mathfrak{c}_Q = \{f \in \mathfrak{O}'_Q : fg \in \mathfrak{O}'_Q \forall g \in \mathfrak{O}_Q\}$, which is also the largest ideal of \mathfrak{O}'_Q that is also an ideal of \mathfrak{O}_Q . We have a chain of inclusions

$$\mathcal{O}_Q \supset k + \mathfrak{r}_Q \supset \mathcal{O}'_O \supset k + \mathfrak{c}_Q$$

where r_Q is the radical of \mathcal{O}_Q , same as the set of $f \in \mathcal{O}_Q$ such that f(P) = 0 for all $P \mapsto Q$.

1.2 Case of an algebraic curve

In case of curves, a curve is normal if and only if nonsingular, so normalization corresponds to *desingularization* for curves. For a normalization $p : X \to X'$, the corresponding $S' \subset X'$ and $S = p^{-1}(S') \subset X$ are finite sets, and especially, S' is nothing but the set of singular points of X'. For all $Q \in X'$, $\delta_Q := \dim(\mathcal{O}_Q/\mathcal{O}'_Q)$ is finite, and positive if and only if $Q \in S'$. δ_Q is also an *analytic invariant*: it is preserved under taking completions: $\delta_Q = \dim(\widehat{\mathcal{O}_Q}/\widehat{\mathcal{O}'_Q})$. We call that two singular points are *analytically isomorphic* if they have same δ_Q .

We know that $\mathcal{O}_Q/\mathcal{O}'_Q$, $\mathcal{O}'_Q/\mathfrak{c}_Q$, and $\mathcal{O}_Q/\mathfrak{c}_Q$ are all finite dimensional, so $\mathfrak{c}_Q \supset \mathfrak{r}^n_Q$ for some n > 0 and we get

$$k + \mathfrak{r}_Q \supset \mathcal{O}'_Q \supset k + \mathfrak{r}^n_Q. \tag{1}$$

Question 1.1. For given X' and $Q \in X'$, how can we compute δ_Q ?

1.3 Construction of a singular curve from its normalization

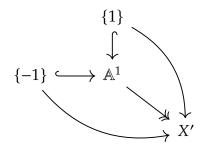
We can also "denormalize" a nonsingular curve X, i.e. do opposite direction of above. More precisely, let X be an irreducible nonsingular curve and $S \subset X$ be a finite set. Let R be an equivalence relation on S, and define S' := S/R. Then Proposition 2 says that $X' := (X \setminus S) \cup S'$ with the canonical projection $p : X \to X'$ becomes an algebraic curve with singularities at S'. Intuitively, we are identifying points in S under the equivalence relation R to get a singular curve X' with singular points S'.

Here's a sketch of the "construction" of \mathcal{O}' , the structure sheaf of X'. Put $\mathcal{O}_Q := \bigcap_{P \to Q} \mathcal{O}_P$ (taking intersection) and r_Q to be the radical of \mathcal{O}_Q . For each $Q \in S'$, choose $\mathcal{O}'_Q \subset \mathcal{O}_Q$ different from \mathcal{O}_Q so that (1) is satisfied for some *n*. For $Q \in X' \setminus S'$, define $\mathcal{O}'_Q = \mathcal{O}_Q$. Then this will form a sheaf \mathcal{O}' .

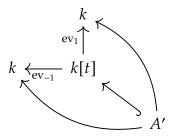
1.3 Construction of a singular curve from its normalization

To prove that (X, \mathcal{O}_X) is a normalization of (X', \mathcal{O}') , it is enough to check when X is affine. Assume that A is a coordinate ring of X. Let $A' = \bigcap_{Q \in X'} \mathcal{O}'_Q \subset A$. For each $P \in X$, let $\mathfrak{a}_P = \{f \in A : f(P) = 0\} \subset A$ be the maximal ideal corresponds to P and $\mathfrak{r} = \bigcap_{P \in S} \mathfrak{a}_P$. By (1) there exists n such that $A' \supset k + \mathfrak{r}^n$, and one can show that A is an A'-module of finite type; so is integral over A'. Then A' is also a k-algebra of finite type and we have a corresponding affine variety Y, and X becomes a normalization of Y (A is an integral closure of A'). Now we can prove that Y is actually isomorphic to (X', \mathcal{O}') .

The above proof is constructive, i.e. it gives a coordinate ring A' of a corresponding X' when $X = \operatorname{Spec} A$ is affine. Here's a different approach that might be easier to understand, at least for me. Consider the case when $X = \mathbb{A}^1 = \operatorname{Spec} k[x]$ and $S = \{1, -1\}$, so that we are identifying two points on a line to get a singular curve. Then the resulting $X' = X/\{1 \sim -1\} = \operatorname{Spec} A'$ should correspond to a universal object to the following diagram



which corresponds to the diagram of rings



In other words, A' is a subring $A' = \{f \in k[t] : f(-1) = f(1)\}$. One can show that A' is generated by two elements $t^2 - 1$ and $t^3 - t$, i.e. $A' = k[t^2 - 1, t^3 - t]$, and A' is not integrally closed since $t = \frac{t^3 - t}{t^2 - 1}$ is in its fractional field, and integral over A' ($t^2 = (t^2 - 1) + 1$), but $x \notin A'$. We also know that A'[t] = k[t] = A, so Ais an integral closure of A'. Now, one can prove that $A' \simeq k[x, y]/(y^2 - x^3 - x^2)$ via ($t^2 - 1, t^3 - t$) $\leftrightarrow (x, y)$.

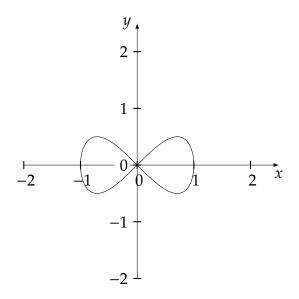
Here's a slightly more complicated example: $X = k[s,t]/(s^2 + t^2 - 1)$ and $S = \{(0,-1), (0,1)\}$, i.e. identifying two points on a circle. Let $B' = \{f \in A\}$

1.3 Construction of a singular curve from its normalization

k[s,t] : f(0,-1) = f(0,1) and $A' = B'/(s^2 + t^2 - 1)$. One can show that $B' = k[t^2 - 1, t(t^2 - 1), s, st]$, hence

$$A' = k[-s^2, -s^2t, s, st]/(s^2 + t^2 - 1) = k[s, st]/(s^2 + t^2 - 1).$$

and this is isomorphic to $k[x, y]/(y^2 - x^2(1 - x^2))$ under the map $(s, st) \leftrightarrow (x, y)$. This gives an equation $y^2 = x^2(1 - x^2)$ of X'.



Another examples is when we identify three distinct points. Consider $X = \mathbb{A}^1$ and $S = \{-1, 0, 1\}$. By the above arguments, $X' = X/S = \operatorname{Spec} A'$ where $A' = \{f \in k[t] : f(-1) = f(0) = f(1)\}$. One can show that

$$A' = k[t(t^2 - 1), t^2(t^2 - 1), t^3(t^2 - 1)] \simeq k[x, y, z]/(y^2 - xz, x^4 - y(y^2 - x^2)),$$

i.e. X' is an intersection of two surfaces $y^2 = xz$ and $x^4 = y(y^2 - x^2)$ in \mathbb{A}^3 .



1.4 Singular curve defined by a modulus

Using the previous construction, we can define a (singular) curve $X_{\mathfrak{m}}$ from a modulus \mathfrak{m} of X. Here we assume deg(\mathfrak{m}) ≥ 2 (otherwise $X_{\mathfrak{m}} = X$). Let S be the support of \mathfrak{m} . Take $S' = \{Q\}$ to be a single point and $X' := (X \setminus S) \cup S'$ (i.e. merge every singular points of X into a single point). Put

$$\mathfrak{c}_Q := \{ f \in \mathfrak{O}_Q : f \equiv 0 \pmod{\mathfrak{m}} \}$$
$$\mathfrak{O}'_Q := k + \mathfrak{c}_Q$$

Then we can apply the previous construction to get a singular curve X_m with a unique singular point Q, where

$$\delta_Q = \dim(\mathcal{O}_Q/\mathcal{O}_Q') = \dim(\mathcal{O}_Q/(k + \mathfrak{c}_Q)) = \dim(\mathcal{O}_Q/\mathfrak{c}_Q) - 1 = \deg(\mathfrak{m}) - 1.$$

For example, when $\mathfrak{m} = 2P$ for some $P \in X$, the corresponding $X_{\mathfrak{m}}$ with $p : X \to X_{\mathfrak{m}}$ has an *ordinary cusp* at Q = p(P), i.e. analytically isomorphic to $y^2 - x^3$ at Q. When $\mathfrak{m} = P_1 + P_2$ with $P_1 \neq P_2$, it identifies two different points on X, and the resulting curve $X_{\mathfrak{m}}$ is analytically isomorphic to xy = 0 at the singular point Q (i.e. Q is a *node*).

Question 1.2. For a given irreducible nonsingular curve *X* (in terms of certain set of equations) and a modulus \mathfrak{m} , how to compute $X_{\mathfrak{m}}$, i.e. how to find a corresponding equation of $X_{\mathfrak{m}}$? Can we do this at least for $X = \mathbb{P}^1$ or \mathbb{A}^1 ?

2 **Riemann–Roch theorems**

2.1 Notations

Now assume *X* (and so *X'*) are complete curves, so also projective. Let g be the genus of *X* and put

$$\delta = \sum_{Q \in S'} \delta_Q$$
$$\pi = \delta + g.$$

For a divisor *D* on *X* prime to *S*, we have a sheaf $\mathcal{L}(D)$ on *X* associated to it. Under the birational map $X \to X'$, we can define a sheaf $\mathcal{L}'(D)$ on *X'* via

$$\mathcal{L}'(D)_Q := \begin{cases} \mathcal{L}(D)_Q & Q \notin S' \\ \mathcal{O}'_Q & Q \in S'. \end{cases}$$

Also, we define

$$L'(D) = H^{0}(X', \mathcal{L}'(D)), \quad I'(D) = H^{1}(X', \mathcal{L}'(D)),$$
$$l'(D) = \dim L'(D), \quad i'(D) = \dim I'(D)$$

as in the nonsingular case. Especially, when $X' = X_m$, we denote above as $L_m(D), I_m(D), l_m(D), i_m(D)$.

2.2 The Riemann–Roch theorem (first form)

The Riemann–Roch theorem for singular curves has a same form as nonsingular case, but just replace l(D), i(D), g with l'(D), i'(D), π : for any divisor D prime to S,

$$l'(D) - i'(D) = \deg(D) + 1 - \pi.$$

We can prove it by using the same argument as in Chapter 2 for nonsingular curves: by considering a cohomology sequence, on can reduce it to the case of D = 0, i.e. $\chi(X', 0') = 1 - \pi$. Using $0 \to 0' \to 0 \to 0/0' \to 0$ and $\chi(X', 0/0') = \dim H^0(X', 0/0') = \delta (0/0')$ is supported on S', it reduces to prove that $\chi(X', 0) = 1-g$. This follows from the fact that $H^q(X, 0_X) = H^q(X', 0)$ for all $q \ge 0$: this holds essentially because $X \to X'$ is a finite map.

2.3 Application to the computation of the genus of an algebraic curve

By considering D = 0, we get $\pi = i'(0) = \dim H^1(X', 0')$. As a corollary, we can compute *arithmetic genus* $p_a(X')$ of a curve: recall that it is defined as

$$p_a(X') = 1 - \chi(X') = 1 - \dim H^0(X', \mathcal{O}') + \dim H^1(X', \mathcal{O}')$$

Since X' is connected, dim $H^0(X', O') = 1$ and we get

$$p_a(X') = \pi = \delta + g.$$

Note that $p_a(X')$ depends on the base field k; see also Stacks project (but again, we assume k is algebraically closed). This is useful since $p_a(X')$ and δ are supposed to be easy to compute, and we can use them to compute g. For example, if X' is a complete intersection of r - 1 hypersurfaces of degre a_1, \ldots, a_{r-1} in \mathbb{P}^r we get

$$\pi = \frac{1}{2}a_1 \cdots a_{r-1} \left(\sum_{i=1}^{r-1} a_i - r - 1 \right) + 1$$

and when r = 2, we get a *Plücker formula*

$$g = \frac{1}{2}d(d-3) + 1 - \delta.$$

2.4 Genus of a curve on a surface

Let *V* be a projective non-singular surface and $X' \subset V$ be a curve in it. Then we have a general formula for $p_a(X')$ in terms of a certain intersection number:

$$p_a(X') = 1 + \frac{1}{2}X' \cdot (X' + K)$$

where K is a canonical divisor of V, i.e. divisor of a non-zero differential form of degree 2.

3 Differentials on a singular curve

3.1 Regular differentials on X'

A differential ω on X is said to be *regular at* $Q \in S'$ if $\sum_{P \to Q} \operatorname{Res}_P(f\omega) = 0$ for all $f \in \mathcal{O}'_Q$. We denote $\underline{\Omega}'_Q$ for the set of regular differentials, which is a \mathcal{O}'_Q -submodule of $D_k(X)$. If we put

$$\underline{\Omega}_Q := \bigcup_{P \to Q} \underline{\Omega}_P,$$

then $\underline{\Omega}_Q \subset \underline{\Omega}'_Q$ and we have a duality between $\mathcal{O}_Q/\mathcal{O}'_Q$ and $\underline{\Omega}'_Q/\underline{\Omega}_Q$, given by the pairing $(f, \omega) \mapsto \sum_{P \to Q} \operatorname{Res}(f \omega)$ above. When $X' = X_{\mathfrak{m}}$ with $\mathfrak{m} = \sum_P n_P P$, ω is regular on X' if and only if

$$\sum_{P \in S} \operatorname{Res}_P(\omega) = 0 \quad \text{and} \quad v_P(\omega) \ge -n_P \,\forall P \in S.$$

For general case, regular differentials are characterized as follows: ω is everywhere regular on X' if and only if $\text{Tr}_g(\omega) = 0$ for every rational function g on X which is not a p-th power (if char(k) = p) and which belongs to all \mathcal{O}'_O , $Q \in S'$.

3.2 Duality theorem

Serre duality also extends to singular curves. For a divisor *D* prime to *S*, associate a sheaf $\underline{\Omega}'(D)$ by

$$\underline{\Omega}'(D)_Q = \begin{cases} \underline{\Omega}'_Q & Q \in S' \\ \underline{\Omega}(D)_Q & Q \notin S'. \end{cases}$$

We also put $\Omega'(D) = H^0(X', \underline{\Omega}'(D))$. Then $\omega \in \Omega'(D)$ if and only if it is regular at all $Q \in S'$ and also $v_P(\omega) \ge v_P(D)$ for all $P \notin S$. Then we have $\Omega'(D) \simeq I'(D)^* =$

3.3 *The equality* $n_Q = 2\delta_Q$

 $H^1(X', \mathcal{L}'(D))^*$, and we get $i'(D) = \dim \Omega'(D)$. Especially, $i'(0) = \dim \Omega'(0) = \pi$, i.e. the dimension of everywhere regular differential forms on X' is π . Proof uses the adèlic language in Chapter 2.

3.3 The equality $n_Q = 2\delta_Q$

For $Q \in S'$, we can identify the conductor ideal \mathfrak{c}_Q with a divisor $\sum_{P \to Q} n_P P$ such that $\mathfrak{c}_Q = \{f \in \mathcal{O}_Q : (f) \ge \sum_{P \to Q} n_P P\}$. By using the duality between $\mathcal{O}_Q/\mathcal{O}_Q'$ and $\underline{\Omega}_Q'/\underline{\Omega}_Q$, one can see that they have the same annihilators and $f \in \mathfrak{c}_Q$ iff $v_P(f\omega) \ge 0$ for all $P \to Q$ and $\omega \in \underline{\Omega}_Q'$. In other words, $n_P = \sup_{\omega \in \underline{\Omega}_Q'} (-v_P(\omega))$. Now put $n_Q := \sum_{P \to Q} n_P$ be the degree of the divisor \mathfrak{c}_Q . Then we have an inequality between n_Q and δ_Q :

$$\delta_Q + 1 \le n_Q \le 2\delta_Q$$

for all $Q \in S'$, and $n_Q = 2\delta_Q$ if and only if $\underline{\Omega}'_Q$ is a free \mathfrak{O}'_Q -module of rank 1. When this holds for all $Q \in S'$, $\underline{\Omega}'$ is locally free and corresponds to a class of divisors of K' on X', where $K = K' - \mathfrak{c}$. Taking deg gives deg $(K') = 2\pi - 2$, and $\underline{\Omega}'(D) \simeq \mathcal{L}'(K' - D)$, which gives a definitive form of the Riemann–Roch theorem

$$l'(D) - l'(K' - D) = \deg(D) + 1 - \pi.$$

For the previous examples of $\mathfrak{m} = P_1 + P_2$ or $\mathfrak{m} = 2P$, the theorem shows that $\delta_Q = 1$ for $Q \in X_{\mathfrak{m}}$, since $n_Q = 2$ and $1 = \frac{n_Q}{2} \le \delta_Q \le n_Q - 1 = 1$ for both cases.

3.4 Complements

Note that $n_Q = 2\delta_Q$ holds when

- X' is a complete intersection in a projective space,
- X' is embedded in a nonsingular surface V.