Singular Algebraic Curves

Seewoo0 Lee

This note closely follows Chapter 4 of Serre’s Algebraic Groups and Class Fields.
We generalize the theory in Chapter 2 to nonsingular curves via normalization.
We also associate a singular curve X, to a modulus m of a nonsingular curve X,
which will be used in the construction of generalized Jacobians later. Most of the
theorems (Riemann—Roch, Serre duality) hold when we replace £(D) and (D)
with appropriate notions £'(D) and Q'(D) for singular curves, and the genus g
with arithmetic genus.

1 Structure of a singular algebraic curve

1.1 Normalization of an algebraic variety

For an irreducible algebraic variety X’, normalization X — X’ can be constructed
locally as taking integral closure Og of each O'Q in K = k(X’). For an affine open
U’ c X’ with A” = 0’(U’), the corresponding normal affine variety U — U’
corresponds to an integral closure A of A" in K, and glueing these U give X. Let
O = p.(Ox), whose stalks are Og = Np_,oOp and O’ is a subsheaf of O. See this
MO answer for the nice geometric intuitions of normal varieties.

Here’s an example from Vakil’s note: consider a nodal curve X’ : y? = x> + x2,
singularity at (0,0). One needs to normalize the ring R = k[x, y]/(y* — x3 — x?).
The element t = y/x € Frac(R) = k(x, y) satisfies the integral equation t> = x +1,
and a corresponding variety X = {(x,y,t) : y>* = x>+ x%,y = tx,t* = x + 1} in
A? with a projection map X — X', (x,y, t) — (x,y). This gives a normalization
of X’, which is a nonsingular curve (which can be checked by computing it’s

Jacobian
—3x2-2x 2y O
J = —t 1 —x
1 0 -2t


https://mathoverflow.net/questions/109395/is-there-a-geometric-intuition-underlying-the-notion-of-normal-varieties
https://mathoverflow.net/questions/109395/is-there-a-geometric-intuition-underlying-the-notion-of-normal-varieties
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1.1  Normalization of an algebraic variety

whose determinant is 0 and the first two columns are linearly independent, so
hasrank 2 = 3—1 and nonsingular. In fact, X ~ Alsince X = {(t>-1,t(t?-1),t)}.

Another example is the curve with a cusp: X’ : y? = x3, singularity at (0, 0).
We can normalize the ring R = k[x, y]/(y2 — x3) similarly as R = k[x, y, t]/(y? -
x3,t?—x,y —tx) (taking t = y/x), which corresponds to the curve X = {(x, y,t) :
y? =x3,12 = x,y = tx} = {(t?,£3,1)}. It's Jacobian is given by

-3x2 =2y 0
J=| 1 0 -2t
—t 1 -X

whose determinant is 0 and the first two columns are linearly independent, so
has rank 2 = 3 — 1. In fact, we have X = {(t?,t3,1)} ~ Al.

We denote as ¢ for the annihilator of O/0’, call it as the conductor of O into
O’. It is a coherent sheaf of ideals on X’ and its variety S’ is a set of points on X’
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1.2 Case of an algebraic curve

which are not normal. Put S = p~1(S’), so that p gives an isomorphism between
X\S and X’\S’, i.e. p is a birational morphism. For Q € X', ¢g = {f € Ob 1 fg €
Ob Vg € O}, which is also the largest ideal of Ob thatis also anideal of Og. We
have a chain of inclusions

OQDk+rQDOIQDk+CQ

where 1( is the radical of Og, same as the set of f € Og such that f(P) = 0 for
allP — Q.

1.2 Case of an algebraic curve

In case of curves, a curve is normal if and only if nonsingular, so normalization
corresponds to desingularization for curves. For a normalization p : X — X', the
corresponding S’ € X’ and S = p~1(S’) C X are finite sets, and especially, S’ is
nothing but the set of singular points of X’. For all Q € X', 6¢ := dim(0g/0(,)
is finite, and positive if and only if Q € S’. 0¢ is also an analytic invariant: it
is preserved under taking completions: 6g = dim(@ / 62). We call that two
singular points are analytically isomorphic if they have same 0.

We know that 0g/07,, OEQ /cg, and Og/cq are all finite dimensional, so ¢g D
ty for some # > 0 and we get

k+rQ:)OEQDk+r’é. (1)

Question 1.1. For given X" and Q € X’, how can we compute 65?

1.3 Construction of a singular curve from its normalization

We can also “denormalize” a nonsingular curve X, i.e. do opposite direction
of above. More precisely, let X be an irreducible nonsingular curve and S € X
be a finite set. Let R be an equivalence relation on S, and define S’ := S/R.
Then Proposition 2 says that X’ := (X\S) U S’ with the canonical projection
p : X — X’ becomes an algebraic curve with singularities at S’. Intuitively, we
are identifying points in S under the equivalence relation R to get a singular
curve X’ with singular points S’.

Here’s a sketch of the “construction” of O’, the structure sheaf of X’. Put
Op = Np_Op (taking intersection) and rg to be the radical of Og. For each
Q € §’, choose Ob C Oq different from Og so that (1) is satisfied for some n. For
Q € X’'\S§’, define (f);2 = Oq. Then this will form a sheaf O’.
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1.3 Construction of a singular curve from its normalization

To prove that (X, Ox) is a normalization of (X’, 0’), it is enough to check when
X is affine. Assume that A is a coordinate ring of X. Let A" = Np¢ X/Ob c A. For
each P € X, letap = {f € A: f(P) = 0} C A be the maximal ideal corresponds
to P and r = Npesap. By (1) there exists n such that A” > k + 1", and one can
show that A is an A’-module of finite type; so is integral over A’. Then A’ is also
a k-algebra of finite type and we have a corresponding affine variety Y, and X
becomes a normalization of Y (A is an integral closure of A”). Now we can prove
that Y is actually isomorphic to (X', O’).

The above proof is constructive, i.e. it gives a coordinate ring A’ of a corre-
sponding X’ when X = Spec A is affine. Here’s a different approach that might be
easier to understand, at least for me. Consider the case when X = A! = Spec k[x]
and S = {1, -1}, so that we are identifying two points on a line to get a singular
curve. Then the resulting X’ = X/{1 ~ -1} = Spec A’ should correspond to a
universal object to the following diagram

{1}
!

{-1} —— Al

Ny

which corresponds to the diagram of rings

ev

k <— k[t]

ev_q

\EA'

In other words, A’ is a subring A" = {f € k[t] : f(-1) = f(1)}. One can show
that A’ is generated by two elements t?—1and t3 —t,ie. A" = k[t? — 1,13 —¢],
and A’ is not integrally closed since t = Ii—:i is in its fractional field, and integral
over A’ (t? = (t* = 1) + 1), but x ¢ A’. We also know that A’[t] = k[t] = A, so A
is an integral closure of A’. Now, one can prove that A’ =~ k[x, y]/(y? — x® — x?)

via (2 - 1,83 —t) & (x,y).

Sy

Here’s a slightly more complicated example: X = k[s, t]/(s? + t* — 1) and
S = {(0,-1),(0,1)}, i.e. identifying two points on a circle. Let B’ = {f €
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1.3 Construction of a singular curve from its normalization

k[s,t] : f(0,-1) = £(0,1)} and A’ = B’/(s?> + t* — 1). One can show that B’ =
k[t? = 1,t(t> = 1), s, st], hence

A’ = k[-s?,-s%t,s,st]/(s®> + t* — 1) = k[s, st] /(s> + 12 - 1).

and this is isomorphic to k[x, y]/(y? — x2(1 — x?)) under the map (s, st) < (x,y).
This gives an equation y? = x?(1 — x2) of X'.

Y,
2__

Another examples is when we identify three distinct points. Consider X =
Aland S = {-1,0,1}. By the above arguments, X’ = X/S = Spec A’ where
A" ={f €k[t]: f(-1) = f(0) = f(1)}. One can show that

A = k[t(t* = 1), £2(t* - 1), (2 = 1)] = k[x, v, 2]/ (y* - xz, x* — y(y* — x?)),

i.e. X’is an intersection of two surfaces y? = xz and x* = y(y* — x?) in A3.




1.4  Singular curve defined by a modulus
1.4 Singular curve defined by a modulus

Using the previous construction, we can define a (singular) curve X, from a
modulus m of X. Here we assume deg(n) > 2 (otherwise X, = X). Let S be the
support of m. Take S’ = {Q} to be a single point and X’ := (X\S)U S’ (i.e. merge
every singular points of X into a single point). Put

g :={f €0g:f=0(modm)}
O’Q :=k+CQ

Then we can apply the previous construction to get a singular curve X,, with a
unique singular point Q, where

6@ = dim(0/04) = dim(Og/(k + ¢@)) = dim(0Og/cg) — 1 = deg(m) — 1.

For example, when m = 2P for some P € X, the corresponding X,, withp : X —
X has an ordinary cusp at Q = p(P), i.e. analytically isomorphic to y? — x> at Q.
When m = P; + P, with Py # P,, it identifies two different points on X, and the
resulting curve X, is analytically isomorphic to xy = 0 at the singular point Q
(i.e. Q is a node).

Question 1.2. For a given irreducible nonsingular curve X (in terms of certain
set of equations) and a modulus m, how to compute X,,, i.e. how to find a
corresponding equation of X,,,? Can we do this at least for X = P! or Al?

2 Riemann-Roch theorems

2.1 Notations

Now assume X (and so X’) are complete curves, so also projective. Let g be the

5= 8¢

Qes’

genus of X and put

n=0+g.

For a divisor D on X prime to S, we have a sheaf £(D) on X associated to it.
Under the birational map X — X’, we can define a sheaf £'(D) on X’ via

L(D)g Q¢S

L'(D)q = {
o,  Qes.
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2.2 The Riemann—Roch theorem (first form)

Also, we define
L'(D)=HX’, £'(D)), I'(D)=H'(X’, L'(D)),
I'(D) =dimL'(D), i'(D)=dimI’'(D)

as in the nonsingular case. Especially, when X’ = X, we denote above as
LTTI(D)/ I]TI(D)/ lm(D)/ lm(D)

2.2 The Riemann-Roch theorem (first form)

The Riemann—-Roch theorem for singular curves has a same form as nonsingular
case, but just replace (D), i(D), g with I'(D),i"(D), m: for any divisor D prime
to S,
I'(D) —i'(D) =deg(D) +1 - .

We can prove it by using the same argument as in Chapter 2 for nonsingular
curves: by considering a cohomology sequence, on can reduce it to the case
of D =0,ie. x(X',0)=1-mn Using0 - 0 - 0 — 0/0" — 0 and
X(X’,0/0") = dimHY(X’,0/0") = § (0/O’ is supported on S’), it reduces to
prove that x(X’, 0) = 1—g. This follows from the fact that H7(X, Ox) = H1(X’, O)
for all g > 0: this holds essentially because X — X’ is a finite map.

2.3 Application to the computation of the genus of an algebraic curve
By considering D = 0, we get = = i’(0) = dim H(X’, ©’). As a corollary, we can
compute arithmetic genus p,(X’) of a curve: recall that it is defined as
pa(X) =1-x(X') =1-dimHYX’, ®") + dim HYX’, ®)
Since X’ is connected, dim H’(X’, 9’) = 1 and we get
pa(X)=mt=0+g.

Note that p,(X’) depends on the base field k; see also Stacks project (but again, we
assume k is algebraically closed). This is useful since p,(X’) and 6 are supposed
to be easy to compute, and we can use them to compute g. For example, if X’ is
a complete intersection of r — 1 hypersurfaces of degre ay, ..., a,-1 in P" we get

1 r—1
n:§a1-~ar_1(2ai—r—1)+1

i=1

and when r = 2, we get a Pliicker formula
g = %d(d—3)+1—6.
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2.4 Genus of a curve on a surface
2.4 Genus of a curve on a surface

Let V be a projective non-singular surface and X’ C V be a curve in it. Then we
have a general formula for p,(X’) in terms of a certain intersection number:

pa(X') =1+ %X’ (X" +K)

where K is a canonical divisor of V, i.e. divisor of a non-zero differential form

of degree 2.

3 Differentials on a singular curve

3.1 Regular differentials on X’

A differential @ on X is said to be regular at Q € S if Y p_,oResp(fw) = 0
for all f € Ob. We denote Q’Q for the set of regular differentials, which is a
Ob-submodule of Di(X). If we put

QQ = U Qp/

P—Q

then Q, C QO and we have a duality between O /0f, and Q,/Q,, given by the
pairing (f, w) — X p_,o Res(fw) above. When X’ = Xy, with m = }p npP, w is
regular on X’ if and only if

ZResP(a)) =0 and vp(w) = -npVP €S.
PesS

For general case, regular differentials are characterized as follows: w is every-
where regular on X’ if and only if Trg(w) = 0 for every rational function g on X
which is not a p-th power (if char(k) = p) and which belongs to all 07,, Q € S".

3.2 Duality theorem

Serre duality also extends to singular curves. For adivisor D primeto S, associate
a sheaf Q'(D) by

Q Qed
Q'(D)g =492
&Pl {Qm)@ Q¢S

We also put (D) = HY(X’, Q(D)). Then w € Q’(D) if and only if it is regular at
all Q € S’ and also vp(w) > vp(D) for all P ¢ S. Then we have QQ'(D) ~ I'(D)* =
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3.3 The equality ng = 20¢

HY(X’, £(D))*, and we get i'(D) = dim Q'(D). Especially, i’(0) = dim ’(0) = 7,
i.e. the dimension of everywhere regular differential forms on X’ is m. Proof
uses the adélic language in Chapter 2.

3.3 The equality ng = 269

For Q € §’, we can identify the conductor ideal ¢g with a divisor }.p_, npP such
that ¢o = {f € Og : (f) 2 Xp_qnpP}. By using the duality between Og/0y,
and Qb /Q, one can see that they have the same annihilators and f € ¢q iff
vp(fw) > 0forallP - Q and w € 922. In other words, np = supwegb(—vp(w)).
Now put ng := Xp_,onp be the degree of the divisor ¢g. Then we have an
inequality between ng and 6¢:

6Q+1SnQ§26Q

forall Q € &, and ng = 260 if and only if Q, is a free 0p-module of rank 1.
When this holds for all Q € S’, QO is locally free and corresponds to a class of
divisors of K’ on X’, where K = K’ — ¢. Taking deg gives deg(K’) = 2rt — 2, and
Q'(D) ~ L’(K’—D), which gives a definitive form of the Riemann—Roch theorem

I'(D)-1I'(K"= D) =deg(D)+1-m.

For the previous examples of m = P; + P, or m = 2P, the theorem shows that
6g =1for Q € X, sinceng =2and 1 = nTQ < 6g < ng —1 =1 for both cases.

3.4 Complements

Note that ng = 26 holds when

e X’is a complete intersection in a projective space,

e X'isembedded in a nonsingular surface V.
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