Automorphic induction from GL_1/K to $\operatorname{GL}_2/\mathbb{Q}$

Seewoo Lee

February 15, 2022

In this note, we show that for any given Hecke character ξ of a quadratic field K/\mathbb{Q} , there exists a GL₂ automorphic form over \mathbb{Q} . This is a part of conjectured *automorphic induction*: for any degree r field extension K/F, an automorphic representation of GL_n over K induces an automorphic representation GL_{rn} over F. Essentially, there are two kinds of automorphic forms of GL₂: (holomorphic) modular forms and Maass forms. Here we give proofs for both cases, where the first case is proved by Hecke and the second case is proved by Maass.

1 Converse theorems of *L*-functions

For any given modular form (or even an automorphic form over $\operatorname{GL}(n)$) $f(z) = \sum_{n>0} a_n e^{2\pi i n z}$, we can define a *L*-function

$$L_f(s) = \sum_{n \ge 1} \frac{a_n}{n^s}$$

which has a meromorphic continuation (with simple poles at s = 0, k), functional equation and bounded on any vertical strip. Hecke's converse theorem gives a converse of this. He proved that if a certain *L*-function satisfies the above properties, then it is a *L*-function comes from a modular form. More precisely:

Theorem 1. Let k be a positive even number. Suppose $f(z) = \sum_{n\geq 0} a_n e^{2\pi i n z}$ with $a_n = O(n^{\alpha})$ for some positive constant $\alpha > 0$. Then $f \in \mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z}))$, i.e. f is a modular form on $\mathrm{SL}_2(\mathbb{Z})$ of weight k if and only if the function

$$\Lambda_f(s) = (2\pi)^{-s} \Gamma(s) \sum_{n \ge 1} \frac{a_n}{n^s}$$

can be analytically continued over the whole s-plane,

$$\Lambda_f(s) + \frac{a_0}{s} + \frac{i^k a_0}{k-s}$$

is entire and bounded in vertical strips, and satisfies the functional equation

$$\Lambda_f(s) = i^k \Lambda_f(k-s).$$

Proof uses the following theorem with q = 1, which is also proved by Hecke.

Theorem 2 (Hecke). Suppose f and g are given by the Fourier series

$$f(z) = \sum_{n \ge 0} a_n e^{2\pi i n z}, \quad g(z) = \sum_{n \ge 0} b_n e^{2\pi i n z}$$

with coefficients a_n, b_n bounded by $O(n^{\alpha})$ for $n \ge 1$ where $\alpha > 0$ is a constant. Let

$$L_f(s) = \sum_{n \ge 1} \frac{a_n}{n^s}, \quad L_g(s) = \sum_{n \ge 1} \frac{b_n}{n^s}$$

be corresponding L-functions and

$$\Lambda_f(s) = \left(\frac{\sqrt{q}}{2\pi}\right)^s \Gamma(s) L_f(s), \quad \Lambda_g(s) = \left(\frac{\sqrt{q}}{2\pi}\right)^s \Gamma(s) L_g(s)$$

be completed L-functions, where q is a given positive number. Put $\omega = \begin{pmatrix} q^{-1} \end{pmatrix}$ and $(f|_{\omega})(z) = (\sqrt{q}z)^{-k}f(-1/qz)$, where k is a given positive integer. TFAE:

- 1. $g = f|_{\omega}$.
- 2. Both $\Lambda_f(s)$ and $\Lambda_g(s)$ have meromorphic continuation over the whole splane,

$$\Lambda_f(s) + \frac{a_0}{s} + \frac{b_0 i^k}{k - s}$$
$$\Lambda_g(s) + \frac{b_0}{s} + \frac{a_0 i^{-k}}{k - s}$$

are entire and bounded on vertical strips, and they satisfy

$$\Lambda_f(s) = i^k \Lambda_g(k-s).$$

Proof of this theorem uses the Mellin transform, the Phragmén-Lindelöf convexity principle and Striling's estimate for the gamma function. (See [6].)

To generalize this result for arbitrary levels, we need more functional equations, which are given by twisting the original L-functions by characters. Weil proved the following converse theorem:

Theorem 3 (Weil). Let $k \ge 1$ be an integer and χ a character mod $q \ge 1$. Let f, g be a function on \mathcal{H} defined by

$$f(z) = \sum_{n \ge 0} a_n e^{2\pi i n z}, \quad g(z) = \sum_{n \ge 0} b_n e^{2\pi i n z}$$

with coefficients $\{a_n\}, \{b_n\}$ bounded by $O(n^{\alpha})$ for all $n \ge 1$, where $\alpha > 0$ is a constant. Suppose $\Lambda_f(s), \Lambda_g(s)$ is defined by

$$\Lambda_f(s) = \left(\frac{\sqrt{q}}{2\pi}\right)^s \Gamma(s) L_f(s), \quad \Lambda_g(s) = \left(\frac{\sqrt{q}}{2\pi}\right)^s \Gamma(s) L_g(s)$$

satisfies the following: both $\Lambda_f(s), \Lambda_g(s)$ have meromorphic continuation over the whole s-plane,

$$\Lambda_f(s) + \frac{a_0}{s} + \frac{b_0 i^k}{k-s}, \quad \Lambda_g(s) + \frac{b_0}{s} + \frac{a_0 i^{-k}}{k-s}$$

are entire and bounded on vertical strips, and they satisfy

$$\Lambda_f(s) = i^k \Lambda_g(k-s).$$

Let \mathcal{R} be a set of prime numbers coprime to q which meets every primitive residue class, i.e. for any c > 0 and any a with (a, c) = 1 there exists $r \in \mathcal{R}$ such that $r \equiv a \pmod{c}$. Suppose for any primitive character ψ of conductor $r \in \mathcal{R}$ the functions

$$\Lambda_f(s,\psi) = \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma(s) L_f(s,\psi) = \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma(s) \sum_{n\geq 1} \frac{a(n)\psi(n)}{n^s}$$
$$\Lambda_g(s,\psi) = \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma(s) L_g(s,\psi) = \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma(s) \sum_{n\geq 1} \frac{b(n)\psi(n)}{n^s}$$

with $N = qr^2$ are entire, bounded in vertical strips and satisfy the functional equation

$$\Lambda_f(s,\psi) = i^k w(\psi) \Lambda_g(k-s,\overline{\psi})$$

with $w(\psi) = \chi(r)\psi(q)\tau(\psi)^2 r^{-1}$, where $\tau(\psi) = \sum_{u \pmod{r}} \psi(u)e^{2\pi i u/r}$ is a Gauss sum. Then $f \in \mathcal{M}_k(\Gamma_0(q), \chi)$, i.e. modular form of weight k on $\Gamma_0(q)$ with a character χ , and $f \in \mathcal{M}_k(\Gamma_0(q), \overline{\chi})$. Also, $g = f|_{\omega}$ where $\omega = \omega_q = \binom{q}{q}^{-1}$. Moreover, f, g are cusp forms if $L_f(s)$ or $L_g(s)$ converges absolutely on some line $\Re s = \sigma$ with $0 < \sigma < k$.

2 Hecke *L*-function

For a number field K, we can define a Dedekind zeta function

$$\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{(N\mathfrak{a})^s}$$

where \mathfrak{a} ranges through nonzero ideals of \mathcal{O}_K , and $N\mathfrak{a} := [\mathcal{O}_K : \mathfrak{a}]$ denotes the absolute norm of \mathfrak{a} . This is a generalization of a zeta function ($\zeta_{\mathbb{Q}}(s)$ coincides with the original Riemann zeta function) and also satisfies some similar properties - has an analytic continuation and a functional equation. We can also *twist* it by some characters as we can do for zeta functions (which is called a Dirichlet *L*-function). Such character is called a *Hecke character*, which is a homomorphism from *I*, the group of fractional ideals, to \mathbb{C} .

To define such L-function, we first define Hecke character. Let I be the group of nonzero fractional ideals of K and $P \leq I$ be the subgroup of principal

ideals. Then the group $\operatorname{Cl}(K) = I/P$ is called the class group of K, which is known to be finite. For any integral ideal $\mathfrak{m} \subset \mathcal{O}_K$, we define

$$I_{\mathfrak{m}} = \{\mathfrak{a} \in I : (\mathfrak{a}, \mathfrak{m}) = 1\}$$
$$P_{\mathfrak{m}} = \{(a) \in P : a \equiv 1 \pmod{\mathfrak{m}}\}$$

Then the group $\operatorname{Cl}_{\mathfrak{m}}(K) := I_{\mathfrak{m}}/P_{\mathfrak{m}}$ is also finite, which is called the ray class group.

Now define a homomorphism $\xi_{\infty}: K^{\times} \to S^1$ by the product

$$\xi_{\infty}(a) = \prod_{\sigma} \left(\frac{a^{\sigma}}{|a^{\sigma}|}\right)^{u_{\sigma}} |a^{\sigma}|^{iv_{\sigma}}$$

where σ ranges through all the embeddings $\sigma : K \to \mathbb{C}$ and the numbers u_{σ}, v_{σ} are given with the following restrictions:

$$\begin{array}{ll} u_{\sigma} = 0, 1 & \text{if } \sigma \text{ is real} \\ u_{\sigma} \in \mathbb{Z} & \text{if } \sigma \text{ is complex} \\ v_{\sigma} \in \mathbb{R} & \text{such that } \sum_{\sigma} v_{\sigma} = 0 \end{array}$$

Then we can find a smallest integral ideal \mathfrak{m} such that the group

$$U_{\mathfrak{m}} = \{\eta \in U_K = \mathcal{O}_K^{\times} : \eta \equiv 1 \,(\mathrm{mod}\,\mathfrak{m})\}$$

is in ker ξ_{∞} . We call such \mathfrak{m} as a modulus of ξ_{∞} . By definition, ξ_{∞} can be regarded as a function on $P_{\mathfrak{m}}$.

A group homomorphism $\xi : I_{\mathfrak{m}} \to S^1$ is said to be a character to modulus \mathfrak{m} if $\xi|_{P_{\mathfrak{m}}} = \xi_{\infty}$. Note that if ξ is a character to modulus \mathfrak{m} , then it is a character to modulus \mathfrak{n} for any $\mathfrak{n} \subseteq \mathfrak{m}$. We call that ξ is primitive if it is not induced by other character with a smaller modulus. We can extend such homomorphism to $\xi : I \to \mathbb{C}$ by setting $\xi(\mathfrak{a}) = 0$ for $(\mathfrak{a}, \mathfrak{m}) \neq 1$. Such map is called *Hecke character* or *Grossencharacter* of *K*. For any given Hecke character ξ , we can define Hecke *L*-function

$$L(s,\xi) = \sum_{0 \neq \mathfrak{a} \subseteq \mathcal{O}_K} \frac{\xi(\mathfrak{a})}{(N\mathfrak{a})^s}.$$

Like other L-functions, it also has the Euler product

$$L(s,\xi) = \prod_{\mathfrak{p}} (1 - \xi(\mathfrak{p})(N\mathfrak{p})^{-s})^{-1}.$$

Hecke proved that the L-function has an analytic countinuation and a functional equation.

Theorem 4 (Hecke). Let $\xi \pmod{m}$ be a primitive nontrivial Hecke character of a number field K. Put

$$\Lambda(s,\xi) = (2^{r_1}(2\pi)^{-n}|D|N\mathfrak{m})^{\frac{s}{2}} \prod_{\sigma} \Gamma\left(\frac{1}{2}(|u_{\sigma}| + n_{\sigma}(s+iv_{\sigma}))\right) L(s,\xi)$$

where

$$n_{\sigma} = \begin{cases} 1 & \sigma \text{ is real} \\ 2 & \sigma \text{ is complex} \end{cases}.$$

The function $\Lambda(s,\xi)$ is entire and bounded in vertical strips, and it satisfies the functional equation

$$\Lambda(s,\xi) = w(\xi)\Lambda(1-s,\overline{\xi})$$

where

$$w(\xi) = i^{-u} W(\xi) (N\mathfrak{m})^{-1/2}, \quad u = \sum_{\sigma} u_{\sigma}.$$

Here $W(\xi)$ is a Gauss sum

$$W(\xi) = \frac{\xi_{\infty}(b)}{\xi(\mathfrak{t})} \sum_{a \in \mathfrak{t}/\mathfrak{tm}} \xi_{\mathfrak{m}}(a) e^{2\pi i (\operatorname{Tr}(a/b))z},$$

where t is an integral ideal prime to m such that tom is principal, say tom = (b) with $b \in \mathcal{O}_K$. The sum does not depend on the choice of t and b. $\xi_{\mathfrak{m}}$ is a character of K^{\times} given by

$$\xi_{\mathfrak{m}}(a) = rac{\xi((a))}{\xi_{\infty}(a)}, \quad a \in K^{\times}$$

which is periodic of period \mathfrak{m} .

3 Modular form associated with imaginary quadratic fields

Now we prove that we can attach a modular form to a given Hecke character of an imaginary quadratic field. Let $K = \mathbb{Q}(\sqrt{D})$ be an imaginary quadratic field with discriminant D < 0. Let $\chi_D(n) = \binom{n}{D}$ be a Kronecker symbol, so that $\chi_D(-1) = 1, -1$ if K is real or imaginary, and

$$\chi_D(p) = \begin{cases} 0 & p \text{ ramifies in } K \\ 1 & p \text{ splits in } K \\ -1 & p \text{ inerts in } K \end{cases}$$

Theorem 5. Let $\xi \pmod{\mathfrak{m}}$ be a Hecke character of K such that

$$\xi((a)) = \left(\frac{a}{|a|}\right)^u \quad \text{if } a \equiv 1 \pmod{\mathfrak{m}}$$

where u is a non-negative integer. Then

$$f(z) = \sum_{\mathfrak{a} \subset \mathcal{O}_K} \xi(\mathfrak{a})(N\mathfrak{a})^{\frac{u}{2}} e^{2\pi i (N\mathfrak{a})z} \in \mathcal{M}_k(\Gamma_0(N), \chi)$$

where k = u + 1, $N = |D| \cdot N\mathfrak{m}$ and $\chi \pmod{N}$ is the Dirichlet character given by

$$\chi(n) = \chi_D(n)\xi((n)), \quad n \in \mathbb{Z}.$$

Proof. Here we only give a proof when ξ is primitive. Consider

$$g(z) = C \sum_{\mathfrak{a}} \overline{\xi}(\mathfrak{a}) (N\mathfrak{a})^{\frac{u}{2}} e^{2\pi i (N\mathfrak{a}) z}$$

where $C = i^{-2u-1}W(\xi)(N\mathfrak{m})^{-1/2}$. By definition, we have $L_f(s) = L(s - \frac{u}{2}, \xi)$ and $L_g(s) = CL(s - \frac{u}{2}, \overline{\xi})$. Now replace s with $s - \frac{u}{2}$ in the functional equation

$$\Lambda(s,\xi) = i^{-u} W(\xi) (N\mathfrak{m})^{-1/2} \Lambda(1-s,\overline{\xi})$$

and we get the functional equation

$$\Lambda_f(s) = i^k \Lambda_g(k-s)$$

where

$$\Lambda_f(s) = \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma(s) L\left(s - \frac{u}{2}, \xi\right), \quad \Lambda_g(s) = \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma(s) C L\left(s - \frac{u}{2}, \overline{\xi}\right).$$

Hence by the converse theorem it follows that

$$g = f|_{\omega_N}, \quad \omega_N = \begin{pmatrix} & -1 \\ N & \end{pmatrix}.$$

Next let $\psi \pmod{p}$ be a primitive Dirichlet character of conductor $p \nmid N$. To show that f is in $\mathcal{M}_k(\Gamma_0(N), \chi)$, we apply the Weil's converse theorem to the completed *L*-functions

$$\Lambda_f(s,\psi) = \left(\frac{p\sqrt{N}}{2\pi}\right)^s \Gamma(s)L\left(s - \frac{u}{2}, \xi \cdot \psi \circ N\right)$$
$$\Lambda_g(s,\psi) = \left(\frac{p\sqrt{N}}{2\pi}\right)^s \Gamma(s)CL\left(s - \frac{u}{2}, \overline{\xi} \cdot \psi \circ N\right),$$

which satisfy the functional equation

$$\Lambda_f(s,\psi) = i^k w(\psi) \Lambda_g(k-s,\overline{\psi})$$

with $w(\psi) = \chi(p)\psi(N)\tau(\psi)^2 p^{-1}$, which follows from the functional equation of Hecke *L*-function again. Here we use the identity $W(\psi \circ N) = \chi_D(p)\psi(|D|)\tau(\psi)^2$. (This identity follows from the *L*-function factorization

$$L(s,\psi \circ N) = L(s,\psi)L(s,\psi\chi_D)$$

and comparing the functional equations of both sides.)

4 Maass form associated with real quadratic fields

By the same argument, we can prove that there exists a Maass form of weight 0 with an eigenvalue 1/4 corresponds to a Hecke character of a real quadratic field. First, we prove that there exists a corresponding weight 1 modular form.

Theorem 6. Let $K = \mathbb{Q}(\sqrt{D})$ be a real quadratic field with discriminant D > 0and $\xi \pmod{\mathfrak{m}}$ a Hecke character such that

$$\xi((a)) = \frac{a}{|a|} \quad if \ a \equiv 1 \pmod{\mathfrak{m}}$$

or

$$\xi((a)) = \frac{a'}{|a'|} \quad if \ a \equiv 1 \pmod{\mathfrak{m}}$$

where a' denotes the conjugate over \mathbb{Q} . Then

$$f(z) = \sum_{\mathfrak{a}} \xi(\mathfrak{a}) e^{2\pi i (N\mathfrak{a})z} \in \mathcal{S}_1(\Gamma_0(N), \chi)$$

where $N = D \cdot N\mathfrak{m}$ and the character $\chi \pmod{N}$ is defined in the previous theorem.

Proof. Define

$$g(z) = C \sum_{\mathfrak{a}} \overline{\xi}(\mathfrak{a}) e^{2\pi (N\mathfrak{a}) z}$$

where $C = -W(\xi)(N\mathfrak{m})^{-1/2}$. By definition, we have $L_f(s) = L(s,\xi)$ and $L_g(s) = CL(s,\overline{\xi})$. The completed *L*-function $\Lambda(s,\xi)$ is given by

$$\begin{split} \Lambda(s,\xi) &= (2^2(2\pi)^{-2}N)^{s/2}\Gamma\left(\frac{s}{2}\right)\Gamma\left(\frac{s+1}{2}\right)L(s,\xi) \\ &= 2\sqrt{\pi}\left(\frac{\sqrt{N}}{2\pi}\right)^s\Gamma(s)L(s,\xi). \end{split}$$

Here we use the duplication formula of the Gamma function

$$\Gamma\left(\frac{s}{2}\right)\Gamma\left(\frac{s+1}{2}\right) = 2^{1-s}\sqrt{\pi}\Gamma(s).$$

Then from the functional equation

$$\Lambda(s,\xi) = i^{-1}W(\xi)(N\mathfrak{m})^{-1/2}\Lambda(1-s,\xi)$$

we get the functional equation

$$\Lambda_f(s) = i\Lambda_g(1-s)$$

where

$$\Lambda_f(s) = \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma(s)L(s,\xi), \quad \Lambda_g(s) = \left(\frac{\sqrt{N}}{2\pi}\right)^s \Gamma(s)CL(s,\overline{\xi}).$$

Hence by the converse theorem it follows that

$$g = f|_{\omega_N}, \quad \omega_N = \begin{pmatrix} & -1 \\ N & \end{pmatrix}.$$

Next let $\psi \pmod{p}$ be a primitive Dirichlet character of conductor $p \nmid N$. To show that f is in $S_1(\Gamma_0(N), \chi)$, we apply the Weil's converse theorem to the completed *L*-functions

$$\Lambda_f(s,\psi) = \left(\frac{p\sqrt{N}}{2\pi}\right)^s \Gamma(s)L\left(s,\xi\cdot\psi\circ N\right)$$
$$\Lambda_g(s,\psi) = \left(\frac{p\sqrt{N}}{2\pi}\right)^s \Gamma(s)CL\left(s,\overline{\xi}\cdot\psi\circ N\right)$$

which satisfy the functional equation

$$\Lambda_f(s,\psi) = iw(\psi)\Lambda_q(1-s,\overline{\psi})$$

with $w(\psi) = \chi(p)\psi(N)\tau(\psi)^2 p^{-1}$, which follows from the functional equation of Hecke *L*-function again.

Corollary 1. Let K, ξ , and χ be as in the previous theorem. Then

$$u(z) = \sum_{\mathfrak{a}} \xi(\mathfrak{a}) y^{1/2} e^{2\pi i (N\mathfrak{a}) z}$$

is a Maass cusp form of weight 1 with an eigenvalue 1/4 and a character χ on $\Gamma_0(N)$.

Proof. Use the fact that if f(z) is a modular form of weight k, then $z \mapsto y^{k/2} f(z)$ is a Maass form of weight k with an eigenvalue $\frac{k}{2} \left(1 - \frac{k}{2}\right)$. u(z) is a cusp form since f(z) is.

Note that $e^{-y} = W_{1,0}(y)$, where $W_{k,ir}(y)$ is the Whittaker function, which is the exponentially-decaying solution of the differential equation

$$y^{2}\frac{d^{2}W}{dy^{2}} + y\frac{dW}{dy} - (y^{2} - ky - r^{2})W = 0.$$

One can check that $\mathcal{W}_{k,ir}(y) := \sqrt{y} W_{k,ir}(2\pi y) e^{2\pi i x}$ is an eigenfunction of the weight k Laplacian with an eigenvalue $\frac{1}{4} + r^2$, i.e. $\Delta_k \mathcal{W}_{k,ir} = (\frac{1}{4} + r^2) \mathcal{W}_{k,ir}$. We can rewrite the function u(z) as

$$u(z) = \sum_{n \ge 1} c_n n^{-1/2} \mathcal{W}_{1,0}(nz)$$

where $c_n = \sum_{N \mathfrak{a} = n} \xi(\mathfrak{a}).$

As you can see, every weight 1 Maass form with an eigenvalue 1/4 comes from a weight 1 modular form, and it is known that there exists a Galois representation associated with such modular form. (This is a theorem of Deligne-Serre, see [3].) It is conjectured that we can attach a Galois representation to any Maass form with an eigenvalue 1/4 (even for weight $k \neq 1$), and this is still open. Cohen construct an explicit example of Maass form of weight 0 with an eigenvalue 1/4 which has a corresponding Galois representation (See [2]).

5 Known cases of automorphic induction

So we just proved the automorphic induction from GL_1/K to $\operatorname{GL}_2/\mathbb{Q}$ when K/\mathbb{Q} is a quadratic extension. In general, automorphic induction is an open problem, but there are some known cases (see [10]):

- Local fields (Henniart-Herb, [5])
- Cyclic Galois extension of prime degree (Arthur-Clozel, [1])
- Non-normal cubic extension (Jacquet-Piatetski-Shapiro-Shalika, [8] and [9])
- Non-normal extensions with solvable Galois closure for certain Hecke characters (Harris, [4])
- Non-normal quintic extension with non-solvable closure (Kim, [7])

References

- J. Arthur, L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies, Princeton University Press, 1989.
- [2] H. Cohen, q-identities for Maass waveforms, Invent. Math. 91, no. 3, 409-422, 1988.
- [3] P. Deligne and J. P. Serre. Formes modulaires de poids 1. Ann. Sci. Ecole Norm. Sup. 7, no. 4, Elsevier, 1974.
- [4] M. Harris, The local Langlands conjecture for GL(n) over a p-adic field, n < p, Invent. Math. 134, no. 1, 177-210, 1998.
- [5] G. Henniart, R. Herb, Automorphic induction for GL(n) (over nonarchmedean fields), Duke Math J. 78, no. 1, 131-192, 1995.
- [6] H. Iwaniec, Topics in Classical Automorphic Forms, American Mathematical Soc., 1997.
- [7] H. Kim, An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type, 2003.

- [8] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Automorphic forms on GL(3) I, Ann. of Math. 109, no. 1, 169-212, 1979.
- [9] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Automorphic forms on GL(3) II, Ann. of Math. 109, no. 2. 213-258, 1979.
- [10] Laie, The status of automorphic induction, question on mathoverflow, https://mathoverflow.net/questions/152263/the-status-of-automorphic-induction.