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In this note, we show that for any given Hecke character £ of a quadratic field
K/Q, there exists a GLy automorphic form over Q. This is a part of conjectured
automorphic induction: for any degree r field extension K/F, an automorphic
representation of GL,, over K induces an automorphic representation GL,.,, over
F'. Essentially, there are two kinds of automorphic forms of GLg: (holomorphic)
modular forms and Maass forms. Here we give proofs for both cases, where the
first case is proved by Hecke and the second case is proved by Maass.

1 Converse theorems of L-functions

For any given modular form (or even an automorphic form over GL(n)) f(z) =
ano a,e?™"* we can define a L-function
a
Li(s) =) —

n>1

which has a meromorphic continuation (with simple poles at s = 0, k), functional
equation and bounded on any vertical strip. Hecke’s converse theorem gives a
converse of this. He proved that if a certain L-function satisfies the above
properties, then it is a L-function comes from a modular form. More precisely:

Theorem 1. Let k be a positive even number. Suppose f(z) =, < ane*™"?
with a, = O(n®) for some positive constant o > 0. Then f € My (SLa(Z)), i.e.
f is a modular form on SLa(Z) of weight k if and only if the function
. an
Ap(s) = (2m)T(9) - 22

n>1
can be analytically continued over the whole s-plane,

ik
an 17 ap

A —
7(s) + p +/€—S

1s entire and bounded in vertical strips, and satisfies the functional equation

Af(s) = ikAf(k — 8)



Proof uses the following theorem with ¢ = 1, which is also proved by Hecke.

Theorem 2 (Hecke). Suppose [ and g are given by the Fourier series

f(Z) — Z aneQﬂ'inZ7 g(z> — Z bneQﬂ'inz

n>0 n>0

with coefficients an, b, bounded by O(n®) for n > 1 where a > 0 is a constant.

Let !
Lis) = Y 2t Ly(s) = > =

n>1 n>1
be corresponding L-functions and
Va\’ V@’
A6 = () T Ao = (1) T,
be completed L-functions, where q is a given positive number. Put w = (q *1)
and (f|w)(2) = (\/az) 7" f(=1/qz), where k is a given positive integer. TFAE:

1. g:f|w

2. Both As(s) and Ay(s) have meromorphic continuation over the whole s-
plane,
(o)) boik
A 20
1)+ =+

bo aoi_k
A _—
o(s) + S * k—s

are entire and bounded on vertical strips, and they satisfy
Ap(s) = i"Ay(k — s).

Proof of this theorem uses the Mellin transform, the Phragmén-Lindel6f
convexity principle and Striling’s estimate for the gamma function. (See [6].)

To generalize this result for arbitrary levels, we need more functional equa-
tions, which are given by twisting the original L-functions by characters. Weil
proved the following converse theorem:

Theorem 3 (Weil). Let k > 1 be an integer and x a character mod q > 1. Let
f,g be a function on H defined by

f(Z) _ Z an62ﬂ'inz, g(z) _ Z bn627rinz
n>0 n>0

with coefficients {an}, {bn} bounded by O(n®) for alln > 1, where a > 0 is a
constant. Suppose As(s),Ag(s) is defined by

At = () T Ao = (L) T,



satisfies the following: both A¢(s), Ag(s) have meromorphic continuation over
the whole s-plane,
bo aoi_k

?—i_k—s

aop boik
Ag(s) + P Ag(s) +

are entire and bounded on vertical strips, and they satisfy
Af(s) = i"Ay(k — s).

Let R be a set of prime numbers coprime to q which meets every primitive
residue class, i.e. for any ¢ > 0 and any a with (a,c¢) = 1 there exists r € R
such that r = a(modc). Suppose for any primitive character ¥ of conductor
r € R the functions

Ag(s¥) = <W> T(s)Ly(s,9) = <W> r(s) Y Anln)

2 21 = ns
Ag(s, ) = (g) D(s)Lg(s, ) = (g) T'(s) Z W

with N = qr? are entire, bounded in vertical strips and satisfy the functional
equation

Ap(s,9) = iFw(y)Ag(k — 5,9)

with w(y) = x(r)(q)T(¥)*r~1, where 7(¢) = >, (mod 1) P(u)e?™™/" is a Gauss
sum. Then f € My(To(q),x), i.e. modular form of weight k on To(q) with a
character x, and f € Mi(To(q),X). Also, g = fl, where w = w, = (q 1.
Moreover, f,g are cusp forms if L¢(s) or Ly(s) converges absolutely on some
line Rs = o with 0 < o < k.

2 Hecke L-function

For a number field K, we can define a Dedekind zeta function

1
C(s) = ZW

a

where a ranges through nonzero ideals of Ok, and Na := [Ok : a] denotes the
absolute norm of a. This is a generalization of a zeta function ({g(s) coincides
with the original Riemann zeta function) and also satisfies some similar prop-
erties - has an analytic continuation and a functional equation. We can also
twist it by some characters as we can do for zeta functions (which is called a
Dirichlet L-function). Such character is called a Hecke character, which is a
homomorphism from I, the group of fractional ideals, to C.

To define such L-function, we first define Hecke character. Let I be the
group of nonzero fractional ideals of K and P < I be the subgroup of principal



ideals. Then the group CI(K) = I/P is called the class group of K, which is
known to be finite. For any integral ideal m C O, we define

Im={acl: (a,m) =1}
Pn={(a) e P:a=1(modm)}

Then the group Cly(K) := In/Pxy is also finite, which is called the ray class

group.
Now define a homomorphism &4 : KX — S' by the product

foo(a> _ H (|ZJ|) 7 |aa|iva

where o ranges through all the embeddings ¢ : K — C and the numbers u,, v,
are given with the following restrictions:

uy, = 0,1 if o is real
Uy € L if o is complex
vy € R such that Y v, =0

Then we can find a smallest integral ideal m such that the group
Un={neUx =0f : n=1(modm)}

is in ker&,,. We call such m as a modulus of &,,. By definition, £,, can be
regarded as a function on Py,.

A group homomorphism ¢ : I, — S is said to be a character to modulus m
if &|p,, = €oo- Note that if £ is a character to modulus m, then it is a character
to modulus n for any n C m. We call that ¢ is primitive if it is not induced by
other character with a smaller modulus. We can extend such homomorphism
to £ : I — C by setting £(a) = 0 for (a,m) # 1. Such map is called Hecke
character or Grossencharacter of K. For any given Hecke character &, we can
define Hecke L-function

Lis.6)= Y (%3

O;éaQOK
Like other L-functions, it also has the Euler product

L(s,&) = [T(1 = ep)vp) =)~

p

Hecke proved that the L-function has an analytic countinuation and a functional
equation.

Theorem 4 (Hecke). Let & (modm) be a primitive nontrivial Hecke character
of a number field K. Put

AGs18) = (2" 20 DIV T (5ol + oo+ ive) ) 25,6



where

1 o is real
Ng = ) .
2 o is complex

The function A(s,&) is entire and bounded in vertical strips, and it satisfies the
functional equation

A(&f) = w(ﬁ)A(l - 875)
where

w(€) =i W(E(Nm) ™2, u= Zug
Here W (&) is a Gauss sum

e b mi(Tr(a
Wi _ &so(b) Z Eo(@)e2mi(Tr(a/D)z,
f(f) act/tm

where t is an integral ideal prime to m such that dm is principal, say tom = (b)
with b € Ok. The sum does not depend on the choice of t and b. & is a
character of K* given by

(@) o e

Sl = ey

which is periodic of period m.

3 Modular form associated with imaginary quadratic
fields

Now we prove that we can attach a modular form to a given Hecke character of
an imaginary quadratic field. Let K = Q(v/D) be an imaginary quadratic field
with discriminant D < 0. Let xp(n) = (%) be a Kronecker symbol, so that
xp(—1) =1,-1if K is real or imaginary, and
0 p ramifies in K
xp(p) =<1 psplitsin K
—1 pinertsin K

Theorem 5. Let £ (modm) be a Hecke character of K such that

£((a)) = (&) if a = 1 (mod m)
where u is a non-negative integer. Then
Z €(a)(Na)2 2™ N0z ¢ A, (To(N), x)
aCOgk

where k =u+1, N = |D|- Nm and x (mod N) is the Dirichlet character given
by
x(n) = xp(n)¢((n)), necZ



Proof. Here we only give a proof when £ is primitive. Consider
=C Z 5 27rz (Na)z

where C = 2_2“ "W (¢)(Nm)~1/2. By definition, we have Ly (s) = L(s — %,¢)

and Lgy(s) = CL(s — %,£). Now replace s with s — % in the functional equation

A(s,€) =i "W()(Nm) " 2A(1 - 5,€)
and we get the functional equation

Ag(s) = i"Ag(k — )

21

As(s) = <Q>SF(S)L (s _ gg) , Ay(s) = (‘/N> I'(s)CL (s _ %E) .

Hence by the converse theorem it follows that

g:f|w1\r7 o"Y]\f:<]v _1>

Next let ¢ (modp) be a primitive Dirichlet character of conductor p { N. To
show that f is in My (To(V),x), we apply the Weil’s converse theorem to the
completed L-functions

Ap(s,0) = (p\/ﬁ>sr(s)L (s - g,g.¢oN)

2w
Ayl = (pf) P)CL (s - 5. woN),

which satisfy the functional equation

Ap(s,9) = Fw()Ag(k — 5,9)

with w(v) = x(p)Y(N)7(¥)*p~1, which follows from the functional equation of
Hecke L-function again. Here we use the identity W (yoN) = xp(p)i(|D])7(2)?.
(This identity follows from the L-function factorization

L(S’w o N) = L(Sa w)L(Sa d}XD)

and comparing the functional equations of both sides.) O



4 Maass form associated with real quadratic fields

By the same argument, we can prove that there exists a Maass form of weight
0 with an eigenvalue 1/4 corresponds to a Hecke character of a real quadratic
field. First, we prove that there exists a corresponding weight 1 modular form.

Theorem 6. Let K = Q(v/D) be a real quadratic field with discriminant D > 0
and £ (modm) a Hecke character such that

&((a)) = if a =1 (modm)

lal

/

£((a)) = ﬁ if a=1(modm)

or

where a' denotes the conjugate over Q. Then

F(2) = 37 €(@)e? V= € 8, (Ty(N), )

where N = D - Nm and the character x (mod N) is defined in the previous
theorem.

Proof. Define
9(z) = O &(a)em V=
a

where C = —W(£)(Nm)~1/2. By definition, we have L;(s) = L(s,&) and

Ly(s) = CL(s,§). The completed L-function A(s,§) is given by

A(s,€) = (22(21)"2N)*/2D (%) r <5 ; 1) L(s,€)

VN
o

=27 ) T'(s)L(s,¢&).

Here we use the duplication formula of the Gamma function

r (%) r (s ; 1) = 215 /xD(s).

Then from the functional equation
Als, &) = i7" W(E)(Nm)TV2A(1 = 5,6)

we get the functional equation

where



Hence by the converse theorem it follows that

g:f|w1\r7 WN:<N _1>

Next let ¢ (modp) be a primitive Dirichlet character of conductor p { N. To
show that f is in S1(To(NV), x), we apply the Weil’s converse theorem to the
completed L-functions

pVN

2T

Af(Sﬂ/’)( > F(S)L(575¢ON)

Ag(s,1) = (7"2/5) (s)CL (5,€ 1o N)

which satisfy the functional equation
Ap(s,9) = iw(y)Ag(1 — s,7)

with w() = x(p)Y(N)7(¢)*p~1, which follows from the functional equation of
Hecke L-function again. O

Corollary 1. Let K,&, and x be as in the previous theorem. Then
U(Z) _ Zé(ﬂ)yl/QGQﬂ—i(Nu)z
a

is a Maass cusp form of weight 1 with an eigenvalue 1/4 and a character x on
To(N).

Proof. Use the fact that if f(z) is a modular form of weight k, then z — y*/2 f(2)
is a Maass form of weight k& with an eigenvalue g (1 — g) u(z) is a cusp form
since f(z) is. O

Note that e™¥ = W ¢(y), where Wy, ;r(y) is the Whittaker function, which
is the exponentially-decaying solution of the differential equation

kL 74
2 V2 ke — 2 —0.
o TV (y* —ky —r°)W

One can check that Wy, ;- (y) := \/ﬂWk’i,ﬁ(%ry)e?’”'w is an eigenfunction of the
weight k Laplacian with an eigenvalue I + 2, i.e. AgWiir = (5 + 1) Wi
We can rewrite the function u(z) as

u(z) = Z enn”YV2W) o(nz)

n>1

where ¢, = > v, &(a).



As you can see, every weight 1 Maass form with an eigenvalue 1/4 comes from
a weight 1 modular form, and it is known that there exists a Galois represen-
tation associated with such modular form. (This is a theorem of Deligne-Serre,
see [3].) It is conjectured that we can attach a Galois representation to any
Maass form with an eigenvalue 1/4 (even for weight k # 1), and this is still
open. Cohen construct an explicit example of Maass form of weight 0 with an
eigenvalue 1/4 which has a corresponding Galois representation (See [2]).

5 Known cases of automorphic induction

So we just proved the automorphic induction from GL; /K to GLy/Q when K/Q
is a quadratic extension. In general, automorphic induction is an open problem,
but there are some known cases (see [10]):

e Local fields (Henniart-Herb, [5])

Cyclic Galois extension of prime degree (Arthur-Clozel, [1])

e Non-normal cubic extension (Jacquet-Piatetski-Shapiro-Shalika, [8] and
[0

e Non-normal extensions with solvable Galois closure for certain Hecke char-
acters (Harris, [4])

e Non-normal quintic extension with non-solvable closure (Kim, [7])
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