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Abstract

This is a note for Berkeley REU happened in Summer 2025. Most of the materials are based

on the Rosen’s book Number Theory in Function Fields [1].

1 Introduction

The goal of this note is to introduce the arithmetic of function fields, which is the analogue of

number theory for polynomials. Especially, our main goal is to study various evidences of the

following claim:

A theorem that holds for integers is also true for polynomials (over finite fields), and latter

is often easier to prove.

For example, we will see a proof of Fermat’s Last Theorem for polynomials, which only requires

few pages to prove.

Dictionary between the integers and the polynomials over finite fields can be found in Table 1

of Appendix.

Notations

Let 𝑝 be a prime number. We denote by F𝑝 the finite field of order 𝑝, which is the field with 𝑝

elements. We denote the polynomial ring F𝑝[𝑇] by 𝐴. For each nonzero polynomial 𝑓 ∈ 𝐴, we

denote it’s norm by | 𝑓 | = 𝑝deg( 𝑓 )
, where deg( 𝑓 ) is the degree of 𝑓 , and we set |0| = 0.

Exercises

1. Prove that Z is not a polynomial ring over a field. In other words, show that there is no field

𝑘 such that Z � 𝑘[𝑇] as rings.
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2. Think about your favorite theorems in number theory, and try to find their polynomial

analogues. Some of them may appear in this note, but some of them may not.

2 Basic number theory and their analogues for polynomials

In this section, we will introduce polynomial analogues of the theorems in number theory, including

• Fundamental Theorem of Arithmetic,

• Chinese Remainder Theorem,

• Fermat’s Little Theorem and Euler’s Theorem,

• Wilson’s Theorem,

2.1 Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic states that every integer greater than 1 can be uniquely

expressed as a product of prime numbers, up to the order of the factors. More fancier way to say

this is that

Theorem 2.1. Z is a unique factorization domain (UFD).

The standard proof is based on the following implication:

Theorem 2.2. If 𝑅 is a Euclidean domain (ED), then 𝑅 is a principal ideal domain (PID), and hence

a UFD.

Recall that 𝑅 is a Euclidean domain if there exists a function 𝑓 : 𝑅\{0} → Z≥0 such that for

any 𝑎, 𝑏 ∈ 𝑅 with 𝑏 ≠ 0, there exist 𝑞, 𝑟 ∈ 𝑅 such that 𝑎 = 𝑏𝑞 + 𝑟 and either 𝑟 = 0 or 𝑓 (𝑟) < 𝑓 (𝑏).
Intuitively, 𝑅 is a Euclidean domain if we can perform the division with remainder, and the function

𝑓 is a measure of the size of the elements in 𝑅. For any (not necessarily finite) field 𝑘, we can also

divide a polynomial by another polynomial over 𝑘, where deg : 𝑅\{0} → Z≥0 works as the function

𝑓 . This shows that:

Theorem 2.3. The polynomial ring 𝑘[𝑇] is a ED, where 𝑘 is any field. Hence it is a PID, and hence

a UFD.

2.2 Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) states that if 𝑛1 , 𝑛2 , . . . , 𝑛𝑘 are pairwise coprime integers,

then the system of congruences

𝑥 ≡ 𝑎1 (mod 𝑛1), 𝑥 ≡ 𝑎2 (mod 𝑛2), . . . , 𝑥 ≡ 𝑎𝑘 (mod 𝑛𝑘)
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has a unique solution modulo 𝑁 = 𝑛1𝑛2 · · · 𝑛𝑘 .

Theorem 2.4 (Chinese Remainder Theorem). Let 𝑛1 , 𝑛2 , . . . , 𝑛𝑘 be pairwise coprime integers and

𝑎1 , 𝑎2 , . . . , 𝑎𝑘 be integers. Then the system of congruences

𝑥 ≡ 𝑎1 (mod 𝑛1), 𝑥 ≡ 𝑎2 (mod 𝑛2), . . . , 𝑥 ≡ 𝑎𝑘 (mod 𝑛𝑘)

has a unique solution modulo 𝑁 = 𝑛1𝑛2 · · · 𝑛𝑘 . More precisely, the unique solution is given by

𝑥 ≡
𝑘∑

𝑖=1

𝑎𝑖𝑁𝑖𝑦𝑖 (mod 𝑁),

where 𝑁𝑖 = 𝑁/𝑛𝑖 and 𝑦𝑖 is the multiplicative inverse of 𝑁𝑖 modulo 𝑛𝑖 , i.e., 𝑁𝑖𝑦𝑖 ≡ 1 (mod 𝑛𝑖).

Proof. The proof is essentially hidden in the following isomorphism:

Z/𝑁Z � Z/𝑛1Z × Z/𝑛2Z × · · · × Z/𝑛𝑘Z.

The natural map from the left hand side to the right hand side is given by reducing modulo 𝑛𝑖 for

each 𝑖, and such a map is injective because 𝑛1 , 𝑛2 , . . . , 𝑛𝑘 are pairwise coprime. Since the size of

the both sides are equal, the map is also surjective, hence an isomorphism. Finding the solution to

the system of congruences is equivalent to finding an element in Z/𝑁Z that maps to (𝑎1 , 𝑎2 , . . . , 𝑎𝑘)
under the isomorphism. It is enough to find solution for the equations

𝑥𝑖 ≡ 0 (mod 𝑛1), 𝑥𝑖 ≡ 0 (mod 𝑛2), · · · 𝑥𝑖 ≡ 1 (mod 𝑛𝑖), · · · , 𝑥𝑖 ≡ 0 (mod 𝑛𝑘)

for each 𝑖, then the solution to the original system of congruences is given by the linear combination

of the solutions to these equations. Such 𝑥𝑖 has to be a multiple of 𝑁𝑖 , and if we write 𝑥𝑖 = 𝑁𝑖𝑦𝑖 ,

then we have 𝑁𝑖𝑦𝑖 ≡ 1 (mod 𝑛𝑖), which means 𝑦𝑖 is the multiplicative inverse of 𝑁𝑖 modulo 𝑛𝑖 .

Such 𝑦𝑖 exists and can be found by the Euclidean Algorithm, since 𝑁𝑖 and 𝑛𝑖 are coprime. □

For example, consider a system of congruences{
𝑥 ≡ 2 (mod 3)
𝑥 ≡ 3 (mod 5)

From Euclidean Algorithm, we can write 1 = 2 · 3 − 1 · 5, which means 5
−1 ≡ (−1) (mod 3) and

3
−1 ≡ 2 (mod 5). Then the formula in Theorem 2.4 gives us 𝑥 ≡ 2 ·5 · (−1)+3 ·3 ·2 (mod 15), which

simplifies to 𝑥 ≡ −10 + 18 ≡ 8 (mod 15).
What is a polynomial analogue of the Chinese Remainder Theorem? We simply replace integers

with polynomials over a finite field, and we get the following theorem.
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Theorem 2.5 (Chinese Remainder Theorem for Polynomials). Let 𝑔1(𝑇), 𝑔2(𝑇), . . . , 𝑔𝑘(𝑇) ∈ F𝑝[𝑇]
be pairwise coprime polynomials and 𝑎1(𝑇), 𝑎2(𝑇), . . . , 𝑎𝑘(𝑇) ∈ F𝑝[𝑇] be polynomials. Then the

system of congruences

𝑓 ≡ 𝑎1 (mod 𝑔1), 𝑓 ≡ 𝑎2 (mod 𝑔2), . . . , 𝑓 ≡ 𝑎𝑘 (mod 𝑔𝑘)

has a unique solution modulo 𝐺 = 𝑔1𝑔2 · · · 𝑔𝑘 . More precisely, the unique solution is given by

𝑓 ≡
𝑘∑

𝑖=1

𝑎𝑖𝐺𝑖𝑏𝑖 (mod 𝐺),

where 𝐺𝑖 = 𝐺/𝑔𝑖 and 𝑏𝑖 is the multiplicative inverse of 𝐺𝑖 modulo 𝑔𝑖 , i.e., 𝐺𝑖𝑏𝑖 ≡ 1 (mod 𝑔𝑖).

Using the exact same method, we can solve a system of congruences. For example, consider{
𝑓 ≡ 1 (mod 𝑇)
𝑓 ≡ 𝑇 (mod 𝑇2 + 1)

We can write 1 = (−𝑇) ·𝑇 + 1 · (𝑇2 + 1) (hence 𝑇 and 𝑇2 + 1 are coprime), which means (𝑇2 + 1)−1 ≡ 1

(mod 𝑇) and 𝑇−1 ≡ −𝑇 (mod 𝑇2 + 1). Then the formula in Theorem 2.5 gives us 𝑓 ≡ 1 · (𝑇2 + 1) ·
1 + 𝑇 · 𝑇 · (−𝑇) (mod (𝑇2 + 1)𝑇), which simplifies to 𝑓 ≡ 𝑇2 + 1 − 𝑇3 ≡ 𝑇2 + 𝑇 + 1 (mod (𝑇2 + 1)𝑇).

2.3 Fermat’s Little Theorem and Euler’s Theorem

Ferma’s Little (not last!) Theorem states the following:

Theorem 2.6 (Fermat’s Little Theorem). Let 𝑝 be a prime number and 𝑎 an integer not divisible by

𝑝. Then

𝑎𝑝−1 ≡ 1 (mod 𝑝).

Here is a proof using group theory.

Proof. Consider the group 𝐺 = (Z/𝑝Z)×. The order of 𝐺 is 𝑝 − 1, and the order of the subgroup

generated by 𝑎 is a divisor of 𝑝 − 1. Thus, by Lagrange’s theorem, we have 𝑎𝑝−1 ≡ 1 (mod 𝑝), as

desired. □

Euler’s theorem is a generalization of Fermat’s Little Theorem, which considers general moduli.

To state Euler’s theorem, we need to define the Euler’s totient function 𝜑(𝑛), which counts the number

of integers from 1 to 𝑛 that are coprime to 𝑛.

Theorem 2.7 (Euler’s Theorem). Let 𝑛 be a positive integer and 𝑎 an integer coprime to 𝑛. Then

𝑎𝜑(𝑛) ≡ 1 (mod 𝑛).
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Proof. Proof is similar to the proof of Theorem 2.6, where we consider the group 𝐺 = (Z/𝑛Z)×
which has order 𝜑(𝑛). □

One may ask how to compute𝜑(𝑛). By CRT again (but for unit groups), we have an isomorphism

(Z/𝑛Z)× � (Z/𝑝𝑘1

1
Z)× × (Z/𝑝𝑘2

2
Z)× × · · · × (Z/𝑝𝑘𝑚

𝑚 Z)× ,

where 𝑛 = 𝑝
𝑘1

1
𝑝𝑘2

2
· · · 𝑝𝑘𝑚

𝑚 is the prime factorization of 𝑛. Thus, we can compute 𝜑(𝑛) as

𝜑(𝑛) = 𝜑(𝑝𝑘1

1
)𝜑(𝑝𝑘2

2
) · · · 𝜑(𝑝𝑘𝑚

𝑚 ),

hence we only need to compute 𝜑(𝑝𝑘) for a prime 𝑝 and a positive integer 𝑘. This counts the

number of integers from 1 to 𝑝𝑘
that are coprime to 𝑝𝑘

, or equivalently multiples of 𝑝, which is

𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1). This gives us the formula

Theorem 2.8. For an integer 𝑛 = 𝑝
𝑘1

1
𝑝𝑘2

2
· · · 𝑝𝑘𝑚

𝑚 , we have

𝜑(𝑛) = 𝑛

𝑚∏
𝑖=1

(
1 − 1

𝑝𝑖

)
. (1)

What is a polynomial analogue of Fermat’s Little Theorem and Euler’s Theorem? Based on

Table 1, prime will be replaced by irreducible polynomial. Unfortunately, it does not make sense to

take exponentiation of a polynomial by another polynomial. However, since 𝜑(𝑛) was defined as

a size of the group (Z/𝑛Z)×, we can define a polynomial analogue of 𝜑(𝑔) as the size of the group

(𝐴/𝑔𝐴)×. Especially, if 𝑔 is irreducible, then (𝐴/𝑔𝐴)× = (𝐴/𝑔𝐴)\{0}, which has size |𝑔 | − 1. The

exact same argument as the proof of Theorem 2.6 and Theorem 2.7 works for polynomials, and we

get the following theorems.

Theorem 2.9 (Fermat’s Little Theorem for Polynomials). Let 𝑓 , 𝑔 ∈ 𝐴 be polynomials, where 𝑔 is

irreducible and 𝑓 is not divisible by 𝑔. Then

𝑓 |𝑔 |−1 ≡ 1 (mod 𝑔).

Theorem 2.10 (Euler’s Theorem for Polynomials). Let 𝑓 , 𝑔 ∈ 𝐴 be coprime polynomials. Then

𝑓 𝜑(𝑔) ≡ 1 (mod 𝑔).

The formula (1) also generalizes to polynomials.

Theorem 2.11. Let 𝑔(𝑇) = 𝑝
𝑘1

1
𝑝𝑘2

2
· · · 𝑝𝑘𝑚

𝑚 be a polynomial in 𝐴, where 𝑝1 , 𝑝2 , . . . , 𝑝𝑚 are distinct

irreducible polynomials in 𝐴. Then

𝜑(𝑔) = |𝑔 |
𝑚∏
𝑖=1

(
1 − 1

|𝑝𝑖 |

)
.
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2.4 Wilson’s Theorem

Another interesting theorem on prime numbers is Wilson’s theorem:

Theorem 2.12 (Wilson’s Theorem). Let 𝑝 be a prime number. Then

(𝑝 − 1)! ≡ −1 (mod 𝑝).

Proof. Consider the group 𝐺 = (Z/𝑝Z)×. The left hand side is the product of all elements in 𝐺.

Now, we can pair up each element 𝑎 ∈ 𝐺 with its inverse 𝑎−1
, except for the case when 𝑎 = 𝑎−1

,

which happens if and only if 𝑎2 ≡ 1 (mod 𝑝) ⇔ 𝑎 ≡ ±1 (mod 𝑝). Thus the product of all elements

in 𝐺 is ≡ 1 · (−1) ≡ −1 (mod 𝑝), as desired. □

What is a polynomial analogue of Wilson’s theorem? Note that the left hand side of Wilson’s

theorem is the product of all nonzero elements in F𝑝 , so it might be reasonable to define “factorial”

(𝑔 − 1)! of an irreducible polynomial 𝑔(𝑇) ∈ F𝑝[𝑇] as the product of all elements in (𝐴/𝑔𝐴)×.

Theorem 2.13 (Wilson’s Theorem for Polynomials). Let 𝑝 be a prime number and 𝐴 = F𝑝[𝑇] the

polynomial ring over the finite field F𝑝 . Let 𝑔(𝑇) ∈ 𝐴 be an irreducible polynomial of degree 𝑑.

Then ∏
0≤deg( 𝑓 )≤𝑑

𝑓 ≡ −1 (mod 𝑔).

Note that the left hand side only depends on the degree of 𝑔(𝑇). Especially, (LHS) + 1 is divisible

by any irreducible polynomial 𝑔(𝑇) of degree 𝑑.

Exercises

1. (a) Find a polynomial 𝑓 ∈ F3[𝑇] such that1{
ℎ ≡ 𝑇 + 2 (mod 𝑇2 + 1)
ℎ ≡ 𝑇2 + 𝑇 (mod 𝑇3 − 𝑇2 + 𝑇 + 2)

(b) Find a polynomial 𝑓 ∈ F7[𝑇] such that2
𝑓 ≡ 5𝑇2 + 3𝑇 + 6 (mod 𝑇3 + 2𝑇2 + 3𝑇 + 2)
𝑓 ≡ 𝑇3 + 1 (mod 𝑇4 + 3𝑇3 + 2𝑇2 + 1)
𝑓 ≡ 𝑇4 − 𝑇 + 2 (mod 𝑇2 + 3𝑇 + 1)

You can try to write a code to find such a polynomial.

1Answer: 𝑓 = 𝑇4 + 𝑇2 + 𝑇 + 2

2Answer: 𝑓 = 𝑇5 + 3𝑇2 + 2𝑇 + 1
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2. For each prime 𝑝 ≤ 20, determine if the polynomial 𝑇2 + 1 is irreducible over F𝑝 or not. Can

you find a pattern?3

3. There are several different proofs of Theorem 2.6, e.g. see wikipedia page. Choose your

favorite argument (other than the one used in Theorem 2.6) and try to generalize it to prove

2.9.4

4. Prove Theorem 2.13.

5. Prove the original version of Fermat’s little theorem from the polynomial version.5

6. Prove the original version of Wilson’s theorem from the polynomial version.6

7. It is known that the following converse of Wilson’s theorem holds: if a natural number 𝑛

satisfies (𝑛 − 1)! ≡ −1 (mod 𝑛), then 𝑛 is a prime number. We can consider a polynomial

analogue of this converse: if a polynomial 𝑔(𝑇) ∈ F𝑝[𝑇] of degree 𝑑 satisfies∏
0≤deg( 𝑓 )≤𝑑
gcd( 𝑓 ,𝑔)=1

𝑓 ≡ −1 (mod 𝑔),

then 𝑔(𝑇) is irreducible over F𝑝 . Here the left hand side is the product of all elements in

(𝐴/𝑔𝐴)×. Prove or disprove this claim.

3Answer will be given later.

4For example, there’s a proof using induction on 𝑎. Can you generalize it to polynomials?

5Hint: for a prime 𝑝 and an integer 𝑎 not divisible by 𝑝, consider 𝑓 (𝑇) = 𝑇 + 𝑎 and 𝑔(𝑇) = 𝑇.

6Hint: consider 𝑔(𝑇) = 𝑇.
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Appendix

Here we summarize the dictionary between the integers and the polynomials over finite fields.

Z 𝐴 = F𝑝[𝑇]

indecomposable prime irreducible

number of units 2 = #(Z×) 𝑝 − 1 = #(F𝑝[𝑇]×) = #(F×𝑝 )
absolute value |𝑛 | = #(Z/𝑛Z) | 𝑓 | = #(𝐴/ 𝑓 𝐴) = 𝑝deg( 𝑓 )

Euler 𝜑 function 𝜑(𝑛) = #(Z/𝑛Z)× 𝜑( 𝑓 ) = #(𝐴/ 𝑓 𝐴)×

Table 1: Integers and Polynomials.
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