
Hilbert’s theorem 90

Seewoo Lee

February 15, 2022

In this note, we introduce Hilbert’s theorem 90 and its applications.

1 Hilbert’s theorem 90

Basically, Hilbert’s theorem 90 is a vanishing theorem of some first Galois co-
homology. Let E/F be a (finite) Galois extension. We can naturally view E×

as a G = Gal(E/F )-module. With the G-module structure, Hilbert’s theorem
90 claims that first group cohomology of G with coefficient E× vanishes.

Theorem 1 (Hilbert). Let E/F be a Galois extension with a Galois group G.
Then H1(G,E×) = 0.

Proof. We need a following lemma:

Lemma 1. Let E be a field and σ1, . . . , σn be a distinct automorphisms of E.
Then they are E-linearly independent.

Proof. Assume that they are not linearly independent. Let r be a number of
nonzero coefficients among ci’s and assume that r is minimal among such r’s.
Also, we may assume that c1, . . . , cr 6= 0 and cr+1 = · · · = cn = 0. Then
r > 1 since c1σ1 = 0 implies c1 = c1σ1(1) = 0. Now choose a ∈ E such that
σ1(a) 6= σr(a). From

c1σ1(ax) + c2σ2(ax) + · · ·+ crσr(ax) = 0

c1σr(a)σ1(x) + c2σr(a)σ2(x) + · · ·+ crσr(a)σr(x) = 0

we have

c1(σ1(a)− σr(a))σ1(x) + · · ·+ cr−1(σr−1(a)− σr(a))σr−1(x) = 0.

By the way, we have c1(σ1(a)−σr(a)) 6= 0, and this contradicts to the minimality
of r.

We have to show that if α : G→ E× is a 1-cocycle, then it is a 1-coboundary,
i.e. α = dβ ⇔ ασ = σ(β)/β for any σ ∈ G. Note that α is a 1-cocycle if and
only if αστ = ασσ(ατ ) for all σ, τ ∈ G. For given 1-cocycle α, consider the map∑

σ∈G
ασσ : E → E.
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By the previous lemma, the above map is nonzero and we can find θ ∈ E such
that γ :=

∑
σ∈G ασσ(θ) 6= 0. Then we have

σγ =
∑
σ∈G

σ(ατ )στ(θ) =
∑
τ∈G

α−1σ αστστ(θ) = α−1σ
∑
τ∈G

αστστ(θ) = α−1σ γ

which implies that ασ = σ(β)/β for β = γ−1.

This is a modern version of Hilbert’s theorem 90. The original version is
about when E/F is a cyclic extension.

Corollary 1. Let E/F be a finite cyclic extension and let σ be a generator of
the Galois group G = Gal(E/F ). For α ∈ E, if NE/F (α) = 1, then α = β/σ(β)
for some β ∈ E.

Proof. Let n = [E : F ]. NE/F (α) = 1 is equivalent to ασ(α) · · ·σn−1(α) = 1.
From this assumption, we can define a 1-cocycle α : G→ E× such that ασ = α.
Then Hilbert’s theorem 90 implies that α is a 1-coboundary, so we can find β
such that α = ασ = β/σ(β).

This is somehow multiplicative version of Hilbert’s theorem 90. There’s also
additive version for the trace map.

Theorem 2 (Hilbert’s theorem 90, Additive form). Let E/F be a cyclic ex-
tension of degree n with Galois group G. Let G = 〈σ〉. Then for α ∈ E,
TrE/F (α) = 0 if and only if α = β − σ(β) for some α ∈ E.

Proof. By the lemma again, we can prove that there exists θ ∈ E such that

TrE/F (θ) = θ + σ(θ) + σ2(θ) + · · ·+ σn−1(θ) 6= 0.

Now put

β :=
1

TrE/F (θ)
(ασ(θ)+(α+σ(α))σ2(θ)+· · ·+(α+σ(α)+· · ·+σn−2(α))σn−1(θ))

then one can check α = β − σ(β) holds.

More generally, we have Hr(G,E) = 0 for any finite Galois extension E/F ,
by using the normal basis theorem and a vanishing property of cohomology of
induced modules.

2 Pythagorean triples

Using Hilbert’s theorem 90, we can find all Pythagorean triples, i.e. rational
points on the circle x2 + y2 = 1.

2



Corollary 2. Let a, b be rational numbers s.t. a2 + b2 = 1. Then there exists
c, d ∈ Z s.t.

(a, b) =

(
c2 − d2

c2 + d2
,

2cd

c2 + d2

)
.

In other words, every rational point on the circle x2 + y2 = 1 has above form.

Proof. This directly follows from Hilbert’s theorem 90 by applying to the ex-
tension Q(i)/Q. In fact, if a2 + b2 = 1, then α = a+ bi ∈ Q(i) has a norm 1, so
there exists c+ di ∈ Q(i) s.t.

α = a+ bi =
c+ di

σ(c+ di)
=
c+ di

c− di
=
c2 − d2

c2 + d2
+

2cd

c2 + d2
i

and we obtain the theorem by multiplying common denominator of c and d.
(Here σ : Q(i)→ Q(i) is the nontrivial element in Gal(Q(i)/Q).)

More generally, by considering the extension Q(
√
−D)/Q for square-free

integer D > 0, we can prove the following:

Corollary 3. Let a, b be rational numbers s.t. a2 +Db2 = 1. Then there exists
c, d ∈ Z s.t.

(a, b) =

(
c2 −Dd2

c2 +Dd2
,

2cd

c2 +Dd2

)
.

3 Kummer extension

Using the Hilbert’s theorem 90, we can prove that any degree n cyclic extension
can be obtained by adjoining certain n-th root of element, if the base field
contains a primitive n-th root of unity.

Theorem 3. Let F be a field and let n ≥ 1 be a natural number with (char p, n) =
1. Assume that F contains a primitive n-th root of unity, ζn. If E/F is a cyclic
extension of degree n, then there exists a ∈ F s.t. E = F ( n

√
a).

Proof. Let E/F be a cyclic extension of degree n and let G = Gal(E/F ) = 〈σ〉.
Since NE/F (ζ−1n ) = (ζ−1n )n = 1, by Hilbert’s theorem 90, there exists α ∈ E×
s.t. ζ−1n = α/σ(α) ⇔ σ(α) = ζnα. Then σj(α) = ζjnα for any 0 ≤ j ≤ n − 1,
so α has n distinct conjugates and [F (α) : F ] ≥ n. However, from [E : F ] = n
and F (α) ⊆ E, we have E = F (α). Moreover, σ(αn) = σ(α)n = ζnnα

n = αn, so
αn ∈ F and E = F ( n

√
a) if we put a = αn.

Kummer theory studies about such kind of extension. It states that any
abelian extension of F of exponent dividing n is formed by extraction of roots
of elements in F . Moreover, there exists a one-to-one correspondence abelian
extensions of F of exponent n and subgroups of F×/(F×)n.
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4 Artin-Schreier extension

Using the additive form of Hilbert’s theorem 90, we can prove that degree p
extension of a characteristic p field can be obtained by adjoining a root of certain
polynomial. This can be considered additive analogue of Kummer extension.

Theorem 4 (Artin-Schreier extension). Let F be a field of characteristic p > 0.

1. For any a ∈ F , the polynomial xp − x − a ∈ F [x] is completely reducible
(every root of the polynomial is in F ) or irreducible.

2. Conversely, if E/F is a cyclic extension of degree p, E is a splitting field
of xp − x− a for some a ∈ E.

Proof. 1. First, we can observe that if α is a root of the polynomial f(x) =
xp−x− a, then α+ j is also root of the polynomial for any 0 ≤ j ≤ p− 1, since
(α + j)p − (α + j) − a = αp − jp − α − j − a = αp − α − a = 0. Hence if f(x)
has a root in F , then every root of f(x) is in F .

Now assume that f(x) doesn’t have a root in F . We claim that f(x) is
irreducible over F . Suppose that f(x) is not irreducible, so that f(x) = g(x)h(x)
for some non-constant polynomials g(x), h(x) ∈ F [x]. If α ∈ F is a root of f(x),
then as we mentioned above, α + j is a root for any 0 ≤ j ≤ p − 1. Thus
f(x) =

∏
0≤j≤p−1(x− α− j) and we have

g(x) =
∏
j∈S

(x− α− j), h(x) =
∏
j 6∈S

(x− α− j)

for some subset S ( {0, 1, . . . , p− 1}. If d = |S|, then the (d− 1)-th coefficient
of g(x) is −

∑
j∈S(α + j) = −dα −

∑
j∈S j ∈ F , which implies dα ∈ F . Since

0 < d < p, we have α ∈ F , which gives a contradiction. Hence f(x) is irreducible
over F .

2. Let E/F be a cyclic extension of degree p and let G = Gal(E/F ) = 〈σ〉.
Since TrE/F (−1) = −p = 0, by additive form of Hilbert’s theorem 90, there
exists α ∈ E s.t. α − σ(α) = −1, i.e. σ(α) = α + 1. Then σj(α) = α + j for
all 0 ≤ j ≤ p− 1, so α has p distinct conjugates and [F (α) : F ] ≥ p. However,
from [E : F ] = p and F (α) = E, this gives E = F (α). Now we have

σ(αp − α) = σ(α)p − σ(α) = (α+ 1)p − (α+ 1) = αp − α,

so αp−α ∈ F and α is a root of the polynomial f(x) = xp−x−a ∈ F [x], where
a = αp − α.

In general, it is hard to find an irreducible polynomial over a finite field
of given degree. However, the above theorem shows that for any prime p, the
polynomial xp − x− 1 is irreducible polynomial over Fp.
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5 Function fields

We can obtain the following interesting theorem for rational functions:

Theorem 5. Let f(x) ∈ C(x) be a rational function which satisfies

f(x)f(ζx)f(ζ2x) · · · f(ζn−1x) = 1

for ζ = ζn = e2πi/n, n-th root of unity. Then there exists g(x) ∈ C(x) s.t.

f(x) =
g(x)

g(ζx)
.

For example, f(x) = ζ clearly satisfies the condition, and we have ζ =
g(x)/g(ζx) for g(x) = 1/x.

Proof. Actually, this is a direct consequence of Hilbert’s theorem 90. Let E =
C(x) and F = C(xn) be a subfield. Then E/F is a Galois extension since E
is a splitting field of the polynomial yn − xn ∈ F [y] = C(xn)[y]. It’s Galois
group is G = Gal(E/F ) ' Z/nZ, where the generator of the group is given by
σ : E → E, σ(f(x)) = f(ζx).

Now the condition on f(x) is equivalent to NE/F f(x) = 1. So by Hilbert’s
theorem 90, there exists g(x) ∈ E s.t. f(x) = g(x)/σ(g(x)) = g(x)/g(ζx).

As one can see in the proof, the theorem also holds if we replace C by any
field k with (char k, n) = 1.

5


	Hilbert's theorem 90
	Pythagorean triples
	Kummer extension
	Artin-Schreier extension
	Function fields

