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In this note, we will compute the ideal class groups of the following number
fields:

Q(
√

226), Q(
√
−30), Q(

√
−89), Q(

3
√

7), Q(α),

where α is a root of a cubic polynomial f(x) = x3 + 11x+ 21.
General method is the following (this follows the argument of [1]): by

Minkowski’s theorem, for any ideal class A of K, there exists an integral ideal
a ∈ A s.t.

N(a) ≤ n!

nn

(
4

π

)s√
|dK | =: MK

where n = [K : Q], s is the number of complex embedding of K and dK is the
discriminant of K. Thus Cl(K) is generated by the ideal class [p] of prime ideals
p with N(p) ≤ MK . By the Proposition 8.3. of [4], we know how the prime
ideal (p) ⊆ Z factors in K very well. Now try to find α ∈ OK s.t. the norm
N((α)) of the principal ideal has only prime factors less than MK , and this
gives a nontrivial relation among ideal classes. We use MATLAB and SAGE
for complicated computations that is hard to do by hand. Especially, we can
compute norm of any element of given number field. SAGE can even compute
ideal class groups of number fields, but we are not going to use this directly.

1 K = Q(
√
226)⇒ Cl(K) ' Z/8Z

Since 226 ≡ 2 (mod 4), discriminant of the field is 4×226 = 904, OK = Z[
√

226]
and the Minkowski bound is 1

2

√
904 < 16. Hence we look at the primes lying

over 2, 3, 5, 7, 11, and 13. Using the Proposition 8.3. of [4], we can determine
how the principal ideals (2), (3), (5), . . . , (13) decompose in OK :

p X2 − 226 mod p factorization

2 X2 (2,
√

226)2 = p22
3 (X − 1)(X + 1) (3,−1 +

√
226)(3, 1 +

√
226) = p3p

′
3

5 (X − 1)(X + 1) (5,−1 +
√

226)(5, 1 +
√

226) = p5p5
′

7 (X − 3)(X + 3) (7,−3 +
√

226)(7, 3 +
√

226) = p7p
′
7

11 X2 − 6 (11)
13 X2 − 5 (13)
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So Cl(K) is generated by [p2], [p3], [p5], and [p7], and [p′3] = [p3]−1, [p′5] = [p5]−1,
and [p′7] = [p7]−1. Note that N(pq) = N(p′q) = q for q = 2, 3, 5, 7.

Before we analyze prime ideals, we will compute the unit group first. Since
K = Q(

√
226) is a real quadratic field, its unit group UK = O×K is generated

by −1 and a fundamental unit ε = a+ b
√

226, which satisfies a2 − 226b2 = ±1.
The continued fraction of

√
226 is [15; 30], so a2 − 226b2 = −1 has an integer

solution (a, b) = (15, 1), and 15 +
√

226 is the fundamental unit we were looking
for. (See [6] for details.)

We will show that p2 = (2,
√

226) is not a principal ideal, so [p2] has order 2
in the class group. If it is a principal ideal that is generated by α = a+ b

√
226,

then p22 = (2) implies 2u = (a + b
√

226)2 for some unit u ∈ UK . By taking a
norm on a both side, NK/Q(u) should be positive and so u = (15 +

√
226)2k for

some k ∈ Z. A unit square can be absorbed into the (a+ b
√

226)2 term, so we
have 2 = (a + b

√
226)2, which is definitely impossible since

√
2 6∈ Z[

√
226]. By

the same way, we can prove that p3, p5, p7 are not principal. Now we will prove
that Cl(K) is a cyclic group of order 8, generated by the ideal class [p3]. Since
N((11+

√
226)) = 105 = 3×5×7, it should be a product of three distinct prime

ideals which lie over (3), (5) and (7), respectively. Those ideals should contain
11 +

√
226, hence we can conclude that

(11 +
√

226) = (3,−1 +
√

226)(5, 1 +
√

226)(7,−3 +
√

226) = p3p
′
5p7.

Similarly, we can check that

(16 +
√

226) = p2p
′
3p
′
5, (17 +

√
226) = p23p

′
7.

By these relations, we have [p5] = [p2][p3]−1 and [p7] = [p3]−1[p5] = [p2][p3]−2.
From [p7] = [p3]2, we get [p2] = [p3]4, and since [p2] has order 2, [p3] has
order 8. Since [p5] = [p3] and [p7] = [p3]2, Cl(K) is generated by one element
[p3] = [(3,−1 +

√
226)], which has order 8.

2 K = Q(
√
−30)⇒ Cl(K) ' Z/2Z× Z/2Z

Since −30 ≡ 2 (mod 4), dK = 2 × (−30) = −60, OK = Z[
√
−30] and the

Minkowski bound is 4
π

√
30 < 7. Hence we look at the primes lying over 2,3, and

5. The ideals (2), (3), (5) decompose in OK as follows:

p X2 + 30 mod p factorization

2 X2 (2,
√
−30)2 = p22

3 X2 − 2 (3)

5 X2 (5,
√
−30)2 = p55

So Cl(K) is generated by [p2] and [p3]. Since both a2+30b2 = 2 and a2+30b2 = 5
don’t have integer solution, p2 and p5 aren’t principal and [p2], [p5] have order
2 in Cl(K).

Now we will show that there’s any relation between [p2] and [p5], so that
Cl(K) is a Klein 4-group generated by [p2] and [p5]. Since both have order 2, it
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is enough to show that [p2] 6= [p5]⇔ [p2p5] 6= 1⇔ p2p5 is not a principal ideal.
We have

p2p5 = (2,
√
−30)(5,

√
−30) = (10, 2

√
−30, 5

√
−30,−30) = (10,

√
−30).

Assume that this is a principal ideal, i.e. (10,
√
−30) = (a + b

√
−30) for some

a, b ∈ Z. Then (10) ⊆ (a + b
√
−30) and (

√
−30) ⊆ (a + b

√
−30) gives a2 +

30b2| gcd(100, 30) = 10, which gives (a, b) = (1, 0), and this generates the unit
ideal. Contradiction.

3 K = Q(
√
−89)⇒ Cl(K) ' Z/12Z

Since −89 ≡ 3 (mod 4), dK = 4 × (−89) = −356, OK = Z[
√
−89] and the

Minkowski bound is 4
π

√
89 < 13. Hence we look at the primes lying over 2, 3,

5, 7, and 11. The ideals (2), (3), (5), (7), (11) decompose in OK as follows:

p X2 + 89 mod p factorization

2 (X + 1)2 (2,−1 +
√
−89)2 = p22

3 (X − 1)(X + 1) (3,−1 +
√
−89)(3, 1 +

√
−89) = p3p

′
3

5 (X − 1)(X + 1) (5,−1 +
√
−89)(5, 1 +

√
−89) = p5p

′
5

7 (X − 3)(X + 3) (7,−3 +
√
−89)(7, 3 +

√
−89) = p7p

′
7

11 X2 + 1 (11)

So Cl(K) is generated by [p2], [p3], [p5], and [p7], and [p′3] = [p3]−1, [p′5] = [p5]−1,
and [p′7] = [p7]−1. Note that N(pq) = N(p′q) = q for q = 2, 3, 5, 7. Since
a2 + 89b2 = q doesn’t have integer solution for q = 2, 3, 5, 7, pq aren’t principal
for q = 2, 3, 5, 7. We will show that the class group is generated by [p5] and [p7],
which have order 3 and 4 respectively. This will prove that Cl(K) is an order
12 cyclic group generated by [p5p7]. We have the following factorizations:

(1 +
√
−89) = p2p

2
3p
′
5

(3 +
√
−89) = p2(p′7)2

(6 +
√
−89) = (p′5)3

(40 + 3
√
−89) = p47

(10 +
√
−89) = (p′3)3p′7.

Since the only integer solution of a2 + 89b2 = 49 is (a, b) = (±7, 0), p27 is
not a principal ideal and [p7] has order 4. Also, we have [p2] = [p7]2. From
[p3]2 = [p2][p5] = [p7]2[p5] and [p3]3 = [p7]−1, we have [p3] = [p5]−1[p7]−3. Thus
Cl(K) is generated by two ideal classes [p5] and [p7], and we can easily check
that the ideal class [p3] = [(3,−1 +

√
−89)] = [p5]−1[p7]−3 = [p5]2[p7] became a

generator of the group.
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4 K = Q( 3
√
7)⇒ Cl(K) ' Z/3Z

This is one of exercises in [3]. First, we will show that OK = Z[ 3
√

7]. It is
clear that Z[ 3

√
7] ⊆ OK . The discriminant of the polynomial x3 − 7 is −1323 =

−33 × 72, so if (OK : Z[ 3
√

7]) is not 1, then its possible prime factors are 3 and
7. Hence it is enough to show that (OK : Z[ 3

√
7]) can’t be divided by 3 or 7.

First, assume that 3|(OK : Z[ 3
√

7]). Then there exists α ∈ OK s.t. α 6∈ Z[ 3
√

7]
but 3α ∈ Z[ 3

√
7]. So α = (a + b 3

√
7 + c 3

√
49)/3 for some a, b, c ∈ Z. By adding

elements in Z[ 3
√

7], we can assume that a, b, c ∈ {−1, 0, 1}. Then

NmK/Q(α) =
1

27
(a3 + 7b3 + 49c3 − 21abc) ∈ Z,

so 27|(a3 + 7b3 + 49c3 − 21abc). However, we can check that the only possible
combination is (a, b, c) = (0, 0, 0), which contradicts to α 6∈ Z[ 3

√
7]. Hence

3 - (OK : Z[
√

7]). Similarly, we can prove that 7 - (OK : Z[ 3
√

7]), so we have
OK = Z[ 3

√
7],

We know that n = 3 = r + 2s where r = 1, s = 1 and dK = −1323 as we
mentioned above. Hence the Minkowski bound is 2

9

(
4
π

)√
1323 < 11, so we look

at the primes lying over 2, 3, 5, and 7. The ideals (2), (3), (5), (7) decompose in
OK as follows:

p X3 − 7 mod p factorization

2 (X − 1)(X2 +X + 1) (2,−1 + 3
√

7)(2, 1 + 3
√

7 + 3
√

49) = p2q2
3 (X − 1)3 (3,−1 + 3

√
7)3 = p33

5 (X − 3)(X2 − 2X − 1) (5,−3 + 3
√

7)(5,−1− 2 3
√

7 + 3
√

49) = p5q5
7 X3 (7, 3

√
7)3 = ( 3

√
7)3 = p37

So Cl(K) is generated by [p2], [p3], [p5], and [q2] = [p2]−1, [q5] = [p5]−1. Note
that N(pq) = q for q = 2, 3, 5, 7 and N(qq) = q2 for q = 2, 5. We have the
following factorizations:

(1 +
3
√

49) = p2p
2
5

(1 +
3
√

7 +
3
√

49) = q2p
2
3

From this, we have [p2] = [p5]−2 and [p3] = [q2][p3]3 = [q2] = [p2]−1 = [p5]2,
so Cl(K) is generated by the single ideal class [p5]. First, we will show that
[p5]3 = 1. Consider α = 5 + 4 3

√
7 + 2 3

√
49 ∈ Z[ 3

√
7]. We have N(α) = 125,

so we should have (α) = p5q5 or p35. Assume that (α) ⊆ q5. Then we also
have (4 3

√
7 + 2 3

√
49) ⊆ q5, since 5 ∈ q5. However, this is impossible since

N(4 3
√

7 + 2 3
√

49) = 840 can’t be divided by N(q5) = 25. Thus (α) = p35 and we
get [p5]3 = 1.

Our last claim is that p5 is not a principal ideal, so that [p5] has order 3
and Cl(K) ' Z/3Z. For this, we have to compute the unit group UK = O×K
first. By Dirichlet’s unit theorem, UK ' µ(OK)× εZ where µ(OK) is the finite
cyclic group of roots of unity in OK and ε is a fundamental unit of UK . From
1 = 8 − 7 = (2 − 3

√
7)(4 + 2 3

√
7 + 3
√

49), both 2 − 3
√

7 and 4 + 2 3
√

7 + 3
√

49 are
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units. Our claim is that these are fundamental units. To prove this, we use
Artin’s inequality:

Theorem 1 (Artin). Let O be an order in a cubic field K with r = 1. Viewing
K in R, if v > 1 is a unit of O× then |disc(O)| < 4v3 + 24.

Corollary 1. Let O be an order in a cubic field K with r = 1 and let ε > 1
be a fundamental unit of K as an element of R. If u > 1 is a unit in O×
and 4u3/m + 24 < |disc(O)| for some integer m ≥ 2, then u = εk for some
1 ≤ k < m. In particular, if 4u3/2 + 24 < |disc(O)|, then u = ε.

For the proof of these, see [2]. Since u = 4+2 3
√

7+ 3
√

49 satisfies 4u3/2+24 <
1323, u is a fundamental unit, and since 2 − 3

√
7 = u−1, we get UK = ±εZ for

ε = 2− 3
√

7. (Note that only real root of unity is ±1.)
Now assume that p5 is a principal ideal generated by β = a+ b 3

√
7 + c 3

√
49 ∈

Z[ 3
√

7]. From p35 = (α), we have αv = β3 for some v ∈ UK . Since β can be
changed by a unit cube without affecting the ideal (β3), we may assume that
v = 1, ε, or ε−1. Now we can deal with this case by case:

1. v = 1. We have β3 = 5 + 4 3
√

7 + 2 3
√

49. From

(a+ b
3
√

7 + c
3
√

49)3 = (a3 + 7b3 + 49c3 + 42abc)

+ (3a2b+ 21b2c+ 21c2a)
3
√

7

+ (3ab2 + 21bc2 + 3ca2)
3
√

49,

we can easily see that it is impossible by comparing coefficient of 3
√

7.
3a2b+ 21b2c+ 21c2a is a multiple of 3, but 4 isn’t.

2. v = ε = 2− 3
√

7. αv = −4 + 3 3
√

7. From a3 + 7b3 + 49c3 + 42abc = −4, we
have a3 ≡ 3 (mod 7). However, we can check that 3 is not a cubic residue
mod 7, so it is impossible.

3. v = ε−1 = 4 + 2 3
√

7 + 3
√

49. αv = 76 + 40 3
√

7 + 21 3
√

49, so it is impossible
since 40 is not a multiple of 3.

Therefore, Cl(K) is a cyclic group of order 3 generated by the ideal class [p5] =
[(5,−3 + 3

√
7)].

5 K = Q[x]/(x3 +11x+21)⇒ Cl(K) ' Z/2Z×Z/2Z
This is an example found by the MSE user Y. H. Ng (see [5]). Let f(x) =
x3+11x+21 and let α ∈ R be a root of f(x). Then K ' Q(α). The discriminant
of K is same as the discriminant of f(x), which is −17231, a prime. Hence we
have OK = Z[α] and the Minkowski bound is 8

9π

√
17231 < 38, so we loot at the

primes lying over 2, 3, 5, 7, 11, 13, 17, 23, 31, and 37. These ideals decompose
in OK as follows:
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p X3 + 11X + 21 mod p factorization
2 X3 +X + 1 (2)
3 (X − 1)X(X + 1) (3, α− 1)(3, α)(3, α+ 1) = p3p

′
3p
′′
3

5 X3 +X + 1 (5)
7 X(X2 + 4) (7, α)(7, α2 + 4) = p7q7
11 (X − 1)(X2 +X + 1) (11, α− 1)(11, α2 + α+ 1) = p11q11
13 (X + 3)(X2 −X − 4) (13, α+ 3)(13, α2 − α− 4) = p13q13
17 (X − 2)(X2 + 2X − 2) (17, α− 2)(17, α2 + α− 2) = p17q17
19 (X + 7)(X2 − 7x+ 3) (19, α+ 7)(19, α2 − 7α+ 3) = p19q19
23 (X − 8)(X2 + 8X + 6) (23, α− 8)(23, α2 + 8α+ 6) = p23q23
29 (X + 4)(X + 6)(X − 10) (29, α+ 4)(29, α+ 6)(29, α− 10) = p29p

′
29p
′′
29

31 X3 + 11x+ 21 (31)
37 X3 + 11x+ 21 (37)

So Cl(K) is generated by [p3], [p′3], [p29], [p′29] and [pq] for q = 7, 11, 13, 17, 19, 23.
Note that N(pq) = q for all q = 3, 7, 11, 13, 17, 19, 23, 29. As before, we will
try to factorize some principal ideals. Good choices for generators are elements
which are generators of pq, which may give an information about [pq]. Norm of
an element α+ j ∈ Z[α] is given by

N(α+ j) = (α+ j)(α′ + j)(α′′ + j)

= j3 + (α+ α′ + α′′)j2 + (αα′ + α′α′′ + α′′α)j + αα′α′′

= j3 + 11j − 21

where α′, α′′ are conjugates of α, i.e. x3 + 11x+ 21 = (x− α)(x− α′)(x− α′′).
From this, we have the following factorizations:

(α) = p′3p7

(α− 1) = p3p11

(α+ 3) = p′3p13

(α− 2) = p′′3p17

(α+ 7) = p′′3p7p19

(α− 8) = (p′′3)3p23

(α+ 4) = p′′3p29

(α+ 6) = (p′3)2p′29

This shows that the whole class group is generated by [p3] and [p′3]. Our claim is
that these are not principal ideals, have order 2, and no relations among them.
Thus Cl(K) ' Z/2Z × Z/2Z where the generators correspond to these ideal
classes. First, they have order dividing 2. In fact, we have

p23 = (α+ 2)

(p′3)2 = (2α2 − 3α+ 27).
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which can be proved by computing their norms.
To show that p3 and p′3 are not principal, we need to compute a fundamental

unit of K as before. One can check that α2 − α − 4 is a unit with (α2 − α −
4)(16α2 − 25α + 215) = 1. The real root of the polynomial x3 + 11x + 21 is
about −1.5624, so u = 16α2 − 25α + 215 satisfies 4u + 24 < 17231. Hence by
the Corollary 1, u = ε or u = ε2 for the fundamental unit ε > 1 of K. We
will show that u = ε2 can not happen by showing that it can’t be a quadratic
residue mod p11. Note that there is an isomorphism F11 ' OK/p11 induced
by Z ↪→ OK . (The inverse map is given by OK → F11, which sends α to 1.
This is a well-defined homomorphism since 11|f(1) = 33.) Now assume that
u = 16α2−25α+215 = ε2. From ε2 = u ≡ 16−25+215 = 206 ≡ 8 (mod p11), 8
should be a quadratic residue mod 11, which is not. Thus u = ε is a fundamental
unit of K.

Now assume that p3 = (3, α − 1) is a principal ideal generated by β =
aα2 + bα + c ∈ Z[α]. Since p23 = (α + 2), we have v(α + 2) = β2 for some
v ∈ O×K . As before, we may assume that v = 1 or ε−1. (We don’t have to
consider −1 and −ε−1 since α+ 2 > 0 in R.) Note that we have

β2 = (aα2 + bα+ c)2 = (b2 + 2ac−11a2)α2 + (2bc+ 22ab−21a2)α+ (c2 + 42ab).

1. v = 1, α + 2 = β2. Then c2 + 42ab = 2, which is impossible by viewing
the equation mod 3.

2. v = ε−1 = α2 − α − 4, (α2 − α − 4)(α + 2) = α2 − 17α − 29 = β2. Then
c2 + 42ab = −29, which is impossible by viewing the equation mod 7.

Thus p3 is not a principal ideal and [p3] ∈ Cl(K) is an element of order 2.
To show that p′3 = (3, α) is not a principal ideal, we will show that p13 =

(13, α + 3) is not a principal ideal, since p′3p13 = (α + 3) is a principal ideal.
From (α+3)2 = (p′3)2p213 = (2α2−3α+27)p213, we have p213 = (−2α2 +9α+19).
If p13 = (β) for some β = aα2 + bα+ c, then we have v(−2α2 + 9α+ 19) = β2

for some v ∈ OK . As before, we can assume that v = 1 or ε−1. (Note that
−2α2 + 9α+ 19 > 0.)

1. v = 1. −2α2 + 9α + 19 = β2. Then c2 + 42ab = 19, which is impossible
by viewing the equation mod 3.

2. v = ε−1 = α2−α− 4. (α2−α− 4)(−2α2 + 9α+ 19) = 40α2− 134α− 307.
Then c2 + 42ab = −307, which is impossible by viewing the equation mod
3.

Thus [p′3] ∈ Cl(K) is an element of order 2.
Now we have to show that [p3] 6= [p′3], which is equivalent to [p′′3 ] 6= 1, i.e. p′′3

is not a principal ideal. Note that we have (p′′3)2 = (−α− 1) with −α− 1 > 0.
Assume that p′′3 = (β) for some β = aα2 + bα+ c ∈ OK and v(−α− 1) = β2 for
some v ∈ O×K . We may assume that v = 1 or ε−1. (Note that −α− 1 > 0.)

1. v = 1. −α−1 = β2. Then c2 +42ab = −1, which is impossible by viewing
the equation mod 3.
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2. v = ε−1 = α2 − α − 4. (α2 − α − 4)(−α − 1) = 16α + 25 = β2, and the
previous argument doesn’t work. However, we can check that

α3+11α+21 =

(
β2 − 25

16

)3

+11

(
β2 − 25

16

)
+21 =

β6 − 75β4 + 4691β2 − 9

4096
= 0

and the polynomial g(x) = x6 − 75x4 + 4691x2 − 9 is irreducible over Q.
Hence the degree of β is 6, which contradicts to β ∈ Q(α).

There’s another way (and more efficient way) to show this. When we
show that u is a fundamental unit, we proved that it can’t be a square by
reduction it mod 11. Similarly, from 29|f(10), we get a homomorphism
OK → F29 that sends α to 10. Under this map, 16α + 25 maps to 185 =
11 ∈ F29, which is a quadratic nonresidue. Hence 16α + 25 can’t be a
square.

Hence we get [p3] 6= [p′3]. As a result, Cl(K) ' Z/2Z × Z/2Z with generators
[p3] = [(3, α− 1)] and [p′3] = [(3, α)].
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