Strange series and Irrationality measure

Seewoo Lee

February 15, 2022

Consider the following problems:

1. Does the following series converge?

$$
\sum_{n=1}^{\infty} \frac{1}{n^3 \sin^2 n}
$$

2. Does the following sequence bounded?

$$
a_n = \frac{1}{|n^2 \sin n|}
$$

Two problems look alike and both aren't easy. In fact, both problems are open. First one is called Flint-Hills series and we don't know the answer yet. To introduce one approach to attack these problems, we introduce the concept of irrationality measure.

Definition 1. Let x be a real number and let $R = R(x)$ be the set of positive real numbers μ for which

$$
0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^\mu}
$$

has at most finitely many solutions p/q for p and q integers. Then the irrationality measure of x is defined as $\mu(x) := \inf_{\mu \in R(x)} \mu$.

If x can be approximated by rational numbers well, then $\mu(x)$ will be small. In fact, we have the following proposition:

Proposition 1. For $x \in \mathbb{Q}$, $\mu(x) = 1$.

Proof. Let $x = \frac{r}{s}$ with $gcd(r, s) = 1$. First, assume that $\mu > 1$. Then

$$
0 < \left| \frac{r}{s} - \frac{p}{q} \right| < \frac{1}{q^{\mu}} \Rightarrow 0 < |qr - ps| < \frac{s}{q^{\mu - 1}}
$$

and $qr - ps$ is a nonzero integer, so $|qr - ps| \geq 1$. Since $\mu > 1$, $\frac{s}{q^{\mu-1}} < 1$ for large q, so the equation only has finitely many solutions. For $\mu = 1 - \epsilon$ with small $\epsilon > 0$, there exists infinitely many (p, q) with $|ps - qr| = 1$ (since $gcd(r, s) = 1$), and then $0 < |qr - ps| = 1 < sq^{\epsilon}$ for sufficiently large q. \Box For $x \notin \mathbb{Q}$, we have Dirichlet's theorem:

Theorem 1 (Dirichlet). For any $x \in \mathbb{R} \backslash \mathbb{Q}$, the inequality

$$
\left| x - \frac{p}{q} \right| < \frac{1}{q^2}
$$

has infinitely many solutions. Hence, for $x \in \mathbb{R} \backslash \mathbb{Q}$, we have $\mu(x) \geq 2$.

Proof. Proof follows from pigeonhole principle. Assume that $x \notin \mathbb{Q}$. We will show the following: for any $N > 0$, there exists integers p, q with $1 \le q \le N$ s.t.

$$
|qx - p| < \frac{1}{N}.
$$

Consider the following set: $\{0, \{x\}, \{2x\}, \{3x\}, \ldots, \{Nx\}\}\,$, where $\{\alpha\} = \alpha - \lfloor \alpha \rfloor$ is a fractional part of α . By pigeonhole principle, there exists $i > j$ s.t. $|\{ix\} \{|jx\}| < \frac{1}{N}$. If we put $q = i - j$ and $p = \lfloor ix \rfloor - \lfloor jx \rfloor$, then we get $|qx - p| < \frac{1}{N}$. From this, we have

$$
0 < \left| x - \frac{p}{q} \right| < \frac{1}{Nq} \le \frac{1}{q^2}.
$$

 \Box

We have a natural question: for which x, $\mu(x) = 2$? Roth's theorem shows that $\mu(x) = 2$ for algebraic numbers with degree > 1 .

Theorem 2 (Roth). Let $x \notin \mathbb{Q}$ be an algebraic number and $\epsilon > 0$. Then

$$
\left| x - \frac{p}{q} \right| < \frac{1}{q^{2+\epsilon}}
$$

has at most finitely many solutions p/q for p and q integers. Hence, we have $\mu(x) = 2$ for $x \in \overline{\mathbb{Q}} \backslash \mathbb{Q}$.

This is a very hard theorem and Roth got Fields medal by proving this. Until now, we don't know much about irrationality measure of transcendental numbers. However, we can express $\mu(x)$ in terms of continued fraction of x.

Theorem 3 (Sondow). Let $x = [a_0, a_1, a_2, \ldots]$ be a simple continued fraction of x and p_n/q_n be n-th convergent. Then

$$
\mu(x) = 1 + \limsup_{n \to \infty} \frac{\ln q_{n+1}}{\ln q_n} = 2 + \limsup_{n \to \infty} \frac{\ln a_{n+1}}{\ln q_n}
$$

To prove this, we need a lemma:

Lemma 1 (Legendre). For integers p, q with

$$
\left|x - \frac{p}{q}\right| < \frac{1}{2q^2},
$$

 p/q is a convergent of the continued fraction expansion of x.

Proof. Define λ_n by

$$
\left|x - \frac{p_n}{q_n}\right| = q_n^{-\lambda_n}.
$$

One can show that

$$
\frac{1}{2q_n q_{n+1}} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}},
$$

so we have

$$
\frac{1}{2q_n q_{n+1}} < \frac{1}{q_n^{\lambda_n}} < \frac{1}{q_n q_{n+1}}.
$$

By taking logarithm, Lemma 1 implies that

$$
\mu(x) = \limsup_{n \to \infty} \lambda_n = 1 + \limsup_{n \to \infty} \frac{\ln q_{n+1}}{\ln q_n}.
$$

As a corollary, one can show that every quadratic irrational number has irrationality measure 2, since their continued fractions are periodic, so $\log q_n \sim$ $n \log \beta$ for some $\beta \in \overline{\mathbb{Q}}$. Also, simple continued fraction of e is

$$
e = [2; 1, 2, 1, 1, 4, 1, 1, 6, \dots]
$$

and we can prove that $\mu(e) = 2$ from this.

Now we go back to the original problems. Both problems are related to irrationality measure of π . Let $\mu = \mu(\pi)$ and $\alpha, \beta > 0$. We are going to estimate the sequence

$$
A_n^{(\alpha,\beta)} = n^{\alpha} |\sin n|^{\beta}.
$$

Theorem 4. For $\alpha, \beta > 0$ with $\frac{\alpha}{\beta} < \mu - 1$, $\inf_{n \geq 1} A_n^{(\alpha, \beta)} = 0$.

Proof. Assume that $\beta(\mu - 1) > \alpha$. Choose $\epsilon > 0$ such that $\beta(\mu - \epsilon - 1) > \alpha$.

$$
\left|\pi - \frac{p}{q}\right| < \frac{1}{q^{\mu - \epsilon}}
$$

has infinitely many solutions.

$$
|\sin p| = |\sin(p - q\pi)| = \sin |p - q\pi| < |p - q\pi| < \frac{1}{q^{\mu - \epsilon - 1}}
$$

$$
A_p^{(\alpha,\beta)}=p^\alpha|\sin p|^\beta<\frac{p^\alpha}{q^{\beta(\mu-\epsilon-1)}}<\frac{(4q)^\alpha}{q^{\beta(\mu-\epsilon-1)}}=\frac{4^\alpha}{q^{\beta(\mu-\epsilon-1)-\alpha}}
$$

and so $\inf_{n\geq 1} A_n^{(\alpha,\beta)} = 0.$

 \Box

Now assume that Flint-Hills series converges. Then we have $\lim_{n\to\infty} 1/A_n^{(3,2)} =$ 0, hence $\inf_{n\geq 1} A_n^{(3,2)} > 0$ and $\mu \leq 1+3/2 = 5/2$. Similarly, if we can prove that ${a_n}$ is bounded, then $\inf_{n\geq 1} 1/a_n = \inf_{n\geq 1} 1/A_n^{(2,1)} > 0$, so $\mu \leq 1+2/1=3$. Note that the current record of the upperbound of $\mu(\pi)$ is 7.6063 which is proved by Salikov (see [\[1\]](#page-3-0)).

There's another interesting series from MO:

$$
\sum_{n=1}^{\infty} \frac{|\sin(n)|^n}{n}.
$$

This also seems that we have to deal with irrationality measure of π . Actually, this series converges and proved by Terrence Tao (see [\[3\]](#page-3-1)). He actually proved the stronger result

$$
\sum_{n=1}^{\infty} \frac{|\sin(n)|^n}{n^{1-\frac{1}{2(\mu-1+\epsilon)}}} < \infty
$$

where $\mu = \mu(\pi)$. He use the fact that $\mu(\pi)$ is finite.

References

- [1] V.Salikhov. On the Irrationality Measure of π , Usp. Mat. Nauk 63, 163-164, 2008
- [2] J. Sondow, Irrationality Measures, Irrationality Bases, and a Theorem of Jarnik, Proceedings of Journées Arithmétiques, Graz 2003 in the Journal du Theorie des Nombres Bordeaux.
- [3] T. Tao, answer to the MO question Is the series $\sum_{n} |\sin n|^n/n$ convergent?, mathoverflow, [https://mathoverflow.net/questions/282259/](https://mathoverflow.net/questions/282259/is-the-series-sum-n-sin-nn-n-convergent) [is-the-series-sum-n-sin-nn-n-convergent](https://mathoverflow.net/questions/282259/is-the-series-sum-n-sin-nn-n-convergent)