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Consider the following problems:

1. Does the following series converge?
∞∑
n=1

1

n3 sin2 n

2. Does the following sequence bounded?

an =
1

|n2 sinn|

Two problems look alike and both aren’t easy. In fact, both problems are open.
First one is called Flint-Hills series and we don’t know the answer yet. To in-
troduce one approach to attack these problems, we introduce the concept of
irrationality measure.

Definition 1. Let x be a real number and let R = R(x) be the set of positive
real numbers µ for which

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qµ

has at most finitely many solutions p/q for p and q integers. Then the irrational-
ity measure of x is defined as µ(x) := infµ∈R(x) µ.

If x can be approximated by rational numbers well, then µ(x) will be small.
In fact, we have the following proposition:

Proposition 1. For x ∈ Q, µ(x) = 1.

Proof. Let x = r
s with gcd(r, s) = 1. First, assume that µ > 1. Then

0 <

∣∣∣∣rs − p

q

∣∣∣∣ < 1

qµ
⇒ 0 < |qr − ps| < s

qµ−1

and qr−ps is a nonzero integer, so |qr−ps| ≥ 1. Since µ > 1, s
qµ−1 < 1 for large

q, so the equation only has finitely many solutions. For µ = 1 − ε with small
ε > 0, there exists infinitely many (p, q) with |ps− qr| = 1 (since gcd(r, s) = 1),
and then 0 < |qr − ps| = 1 < sqε for sufficiently large q.
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For x 6∈ Q, we have Dirichlet’s theorem:

Theorem 1 (Dirichlet). For any x ∈ R\Q, the inequality∣∣∣∣x− p

q

∣∣∣∣ < 1

q2

has infinitely many solutions. Hence, for x ∈ R\Q, we have µ(x) ≥ 2.

Proof. Proof follows from pigeonhole principle. Assume that x 6∈ Q. We will
show the following: for any N > 0, there exists integers p, q with 1 ≤ q ≤ N s.t.

|qx− p| < 1

N
.

Consider the following set: {0, {x}, {2x}, {3x}, . . . , {Nx}}, where {α} = α−bαc
is a fractional part of α. By pigeonhole principle, there exists i > j s.t. |{ix} −
{jx}| < 1

N . If we put q = i− j and p = bixc − bjxc, then we get |qx− p| < 1
N .

From this, we have

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

Nq
≤ 1

q2
.

We have a natural question: for which x, µ(x) = 2? Roth’s theorem shows
that µ(x) = 2 for algebraic numbers with degree > 1.

Theorem 2 (Roth). Let x 6∈ Q be an algebraic number and ε > 0. Then∣∣∣∣x− p

q

∣∣∣∣ < 1

q2+ε

has at most finitely many solutions p/q for p and q integers. Hence, we have
µ(x) = 2 for x ∈ Q\Q.

This is a very hard theorem and Roth got Fields medal by proving this.
Until now, we don’t know much about irrationality measure of transcendental
numbers. However, we can express µ(x) in terms of continued fraction of x.

Theorem 3 (Sondow). Let x = [a0, a1, a2, . . . ] be a simple continued fraction
of x and pn/qn be n-th convergent. Then

µ(x) = 1 + lim sup
n→∞

ln qn+1

ln qn
= 2 + lim sup

n→∞

ln an+1

ln qn

To prove this, we need a lemma:

Lemma 1 (Legendre). For integers p, q with∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
,

p/q is a convergent of the continued fraction expansion of x.
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Proof. Define λn by ∣∣∣∣x− pn
qn

∣∣∣∣ = q−λnn .

One can show that
1

2qnqn+1
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnqn+1
,

so we have
1

2qnqn+1
<

1

qλnn
<

1

qnqn+1
.

By taking logarithm, Lemma 1 implies that

µ(x) = lim sup
n→∞

λn = 1 + lim sup
n→∞

ln qn+1

ln qn
.

As a corollary, one can show that every quadratic irrational number has
irrationality measure 2, since their continued fractions are periodic, so log qn ∼
n log β for some β ∈ Q. Also, simple continued fraction of e is

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, . . . ]

and we can prove that µ(e) = 2 from this.
Now we go back to the original problems. Both problems are related to

irrationality measure of π. Let µ = µ(π) and α, β > 0. We are going to estimate
the sequence

A(α,β)
n = nα| sinn|β .

Theorem 4. For α, β > 0 with α
β < µ− 1, infn≥1A

(α,β)
n = 0.

Proof. Assume that β(µ− 1) > α. Choose ε > 0 such that β(µ− ε− 1) > α.∣∣∣∣π − p

q

∣∣∣∣ < 1

qµ−ε

has infinitely many solutions.

| sin p| = | sin(p− qπ)| = sin |p− qπ| < |p− qπ| < 1

qµ−ε−1

A(α,β)
p = pα| sin p|β < pα

qβ(µ−ε−1)
<

(4q)α

qβ(µ−ε−1)
=

4α

qβ(µ−ε−1)−α

and so infn≥1A
(α,β)
n = 0.
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Now assume that Flint-Hills series converges. Then we have limn→∞ 1/A
(3,2)
n =

0, hence infn≥1A
(3,2)
n > 0 and µ ≤ 1+3/2 = 5/2. Similarly, if we can prove that

{an} is bounded, then infn≥1 1/an = infn≥1 1/A
(2,1)
n > 0, so µ ≤ 1 + 2/1 = 3.

Note that the current record of the upperbound of µ(π) is 7.6063 which is proved
by Salikov (see [1]).

There’s another interesting series from MO:

∞∑
n=1

| sin(n)|n

n
.

This also seems that we have to deal with irrationality measure of π. Actually,
this series converges and proved by Terrence Tao (see [3]). He actually proved
the stronger result

∞∑
n=1

| sin(n)|n

n1−
1

2(µ−1+ε)

<∞

where µ = µ(π). He use the fact that µ(π) is finite.
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