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Abstract

This is a survey note on the smallest exceptional group 𝐺2 and modular

forms on it. After reviewing the theory of automorphic representations of

GL2(A), we introduce a parallel theory for the exceptional group 𝐺2.

1 Introduction

The main goal of this note is to give evidences (not proof) of the following claim:

Claim. Modular forms on the exceptional group 𝐺2 are as much interesting as

classical modular forms.

While reading the note, you will find that many of the features of the classical

modular forms also possessed by the modular forms on 𝐺2, including:

• Fourier coefficients and expansions via cubic rings (Section 4.2 and 6.2)

• Local representation theory (Section 5)

• Eisenstein series and theta series (Section 6.4)

• Hecke operators (Section 6.3)

Gan–Gross–Savin [13] initiated the theory of 𝐺2 modular forms, based on the

structure theory [1], quaternionic discrete series [17], Hecke algebra [15], mul-

tiplicity one [32], etc. We start with covering the basic theory of automorphic

forms on GL2,Q in Section 2. Section 3 covers the definition of (split) 𝐺2 and its

root system. We define the Heisenberg parabolic subgroup of 𝐺2 in Section 4,

along with its relation with the space of cubic rings. Archimedean and non-

archimedean representation theory of 𝐺2 is coverd in Section 5, which will be
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Holomorphic modular forms and automorphic representations of GL2

used to define weights of modular forms on 𝐺2 in Section 6. We end the note by

introducing related works that are not covered here (Section 7) for the readers

who are interested in the topic.

2 Holomorphic modular forms and automorphic representa-
tions of GL2

In this section, we recall the theory of automorphic representations of GL2(AQ),
and how to associate such an automorphic representation with a holomorphic

modular form. The main references are Bump [6], Getz–Hahn [14], and Booher’s

note [4]. We assume that the readers are familiar with the theory of holomorphic

modular forms - if not, the standard references for the classical theory are Serre

[30], Diamond–Shurman [11], Zagier [34], and Bump [6, Chapter 1] again.

2.1 Adelizing holomorphic modular forms

Let 𝑓 : H → C be a holomorphic modular form of (even) weight 𝑘 and level

1, defined on the complex upper-half plane H = {𝑧 ∈ C : ℑ(𝑧) > 0}. We can

upgrade 𝑓 to a function 𝜑 𝑓 on GL2(A) as follows. By the strong approximation

theorem, any 𝑔 ∈ GL2(A) can be written as 𝑔 = 𝛾𝑔∞𝑔fin
with 𝛾 ∈ GL2(Q)

(diagonally embedded), 𝑔∞ ∈ GL
+
2
(R), 𝑔

fin
∈ GL2(Ẑ) =

∏
𝑝<∞ GL2(Z𝑝). Then we

define

𝜑 𝑓 (𝛾𝑔∞𝑔fin
) = ( 𝑓 |𝑘 𝑔∞)(𝑖) = (𝑎𝑑 − 𝑏𝑐)𝑘/2(𝑐𝑖 + 𝑑)−𝑘 𝑓

(
𝑎𝑖 + 𝑏
𝑐𝑖 + 𝑑

)
where 𝑔∞ =

(
𝑎 𝑏
𝑐 𝑑

)
∈ GL2(R). Using the transformation law of 𝑓 , one can show

that 𝜑 𝑓 is well-defined and becomes an automorphic form on GL2(A): it is

• left GL2(Q)-invariant,

• right 𝐾 = 𝐾∞𝐾fin
= O(2)GL2(Ẑ)-finite,

• has moderate growth,

• 𝑍 = 𝑍(GL2(A))-invariant,

• 𝒵 = 𝒵(𝔤𝔩
2
(R))-finite,

• if 𝑓 is a cusp form, then ∫
Q\A

𝜑 𝑓

((
1 𝑥

0 1

)
𝑔

)
d𝑥 = 0
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2.2 Archimedean representation theory of GL2

for all 𝑔 ∈ GL2(A).

We denote the space of functions on GL2(A) satisfying the above conditions

(resp. including the last condition) as 𝒜(GL2) (resp. 𝒜0(GL2)). It admits an

action of (𝔤𝔩
2
, 𝑂(2)) × GL2(Afin

) via differentiation and right translation

((𝑋, 𝑘, 𝑔
fin
), 𝜑) ↦→ (𝑥 ↦→ 𝑋𝜑(𝑥𝑘𝑔

fin
)).

Now, we can associate a representation of (𝔤𝔩
2
,O(2)) × GL2(Afin

) with 𝑓 by con-

sidering the space generated by the right translations of 𝜑 𝑓 , denoted as 𝜋 = 𝜋 𝑓 .

The representation is irreducible if and only if 𝑓 is a Hecke eigenform, and the

corresponding 𝜋 becomes an automorphic representation, i.e. irreducible and ad-

missible subquotient of the space 𝒜(GL2) (with right translation). Especially,

any irreducible admissible automorphic representation factors as a (restricted)

tensor product of local representations 𝜋 ≃ ⊗′
𝑝≤∞𝜋𝑝 , proven by Flath. Theorem

2.1 tells you how these local components are related to the original modular

form 𝑓 .

Theorem 2.1. Let 𝑓 =
∑
𝑛≥0

𝑎𝑛( 𝑓 )𝑞𝑛 be an eigenform of weight 𝑘 and level 1.

Then the associated automorphic representation factors as 𝜋 = ⊗′
𝑝≤∞𝜋𝑝 where

1. 𝜋∞ is a discrete series of weight 𝑘.

2. 𝜋𝑝 is an unramified principal series of GL2(Q𝑝) induced from (unramified)

characters 𝜒1, 𝜒2 with 𝜒𝑖(𝑝) = 𝛼𝑖/𝑝
𝑘−1

2 satisfying

𝛼1 + 𝛼2 = 𝑎𝑝( 𝑓 ), 𝛼1𝛼2 = 𝑝𝑘−1.

The definitions of discrete series and unramified principal series will be explained

in the following sections 2.2 and 2.3, along with the classification of local repre-

sentations.

If we consider modular forms of higher level or Maass wave forms, then we

can get more interesting local representations (e.g. Steinberg or supercuspidal

at finite places or other principal series at the archimedean place). See [22] for

the computation of local representations at nonarchimedean places when they

are supercuspidal.

2.2 Archimedean representation theory of GL2

To study a representation of GL2(R) or a general Lie group 𝐺(R), we study

the associated (𝔤, 𝐾)-modules instead, which are more “algebraic” in nature.
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2.2 Archimedean representation theory of GL2

Here 𝔤 is (the complexification of) the Lie algebra of 𝐺, and 𝐾 is a maximal

compact subgroup of 𝐺. Then (𝔤, 𝐾)-module is a vector space equipped with

actions of 𝔤 and 𝐾 which are compatible in a certain sense. A (𝔤, 𝐾)-module 𝑉

is admissible if 𝑉(𝜎) (𝜎-isotypic part of 𝑉) is finite dimensional for any unitary

representation 𝜎 of 𝐾. Now, for any Hilbert space representation 𝜋 of 𝐺(R),
we can always associate a (𝔤, 𝐾)-module (by differentiating and restricting the

original representation), and it determines the original representation when 𝜋

is unitary.

In case of 𝐺 = GL2, we have a complete classification of irreducible admis-

sible (𝔤𝔩
2
,O(2))-modules. Representations of 𝔤𝔩

2
(C) is well-understood; espe-

cially, the center of the universal enveloping algebra 𝒵(𝔤𝔩
2
(C)) = 𝒵(𝒰(𝔤𝔩

2
(C)))

is generated by the two elements 𝑍 =
(

1 0

0 1

)
and Δ (Casimir operator), and it is

enough to understand how these elements act (which are just constants since

they live in the center). All irreducible representations of O(2) are either triv-

ial, determinant, or 𝜏𝑛 = Ind
O(2)
SO(2)(𝜖𝑛) induced from 1-dimensional characters

𝜖𝑛 : SO(2) → S1, 𝜅𝜃 =
(

cos𝜃 − sin𝜃
sin𝜃 cos𝜃

)
↦→ 𝑒 𝑖𝑛𝜃 for 𝑛 ≥ 1. Using this, we can obtain

the following classification result.

Theorem 2.2. Irreducible admissible (𝔤𝔩
2
, 𝑂(2))-modules is one of the following:

1. Principal series 𝜋𝑠,𝜇,𝜀 = pInd
GL2(R)
𝐵(R) (𝜒1 ⊠ 𝜒2), with

𝜒𝑖 : R× → R×, 𝑦 ↦→ sgn(𝑦)𝜀𝑖 |𝑦 |𝑠𝑖

where 𝜀1, 𝜀2 ∈ {0, 1} and 𝑠1, 𝑠2 ∈ C satisfy 𝜀 ≡ 𝜀1 + 𝜀2 (mod 2), 𝜇 =

𝑠1 + 𝑠2, 𝑠 =
1

2
(𝑠1 − 𝑠2 + 1). 𝑍 (resp. Δ) acts as 𝜇 (resp. 𝜆 = 𝑠(1 − 𝑠)).

2. Discrete series 𝜋𝑘,𝜇 for 𝑘 ≥ 2.

Here pInd stands for parabolic induction. Discrete series appear discretely

in the decomposition of the regular representation of GL2(R) on 𝐿2(GL2(R)).
These can be realized as a representation on a space of holomorphic functions

(and they are often called holomorphic discrete series) of Hwith Petersson norm.

Especially, they are unitarizable. As we see in Theorem 2.1, discrete series appear

as archimedean component of the automorphic representation associated with

a holomorphic modular form of weight 𝑘. Note that there is a limit of discrete

series 𝜋1,𝜇, which is actually the principal series 𝜋 1

2
,𝜇,𝜀.

For general 𝐺, we can still use “parabolic induction” technique by inducing

(tempered) representations of Levi subgroups, and this gives all irreducible

admissible representations by Langlands [14, Theorem 4.9.2].
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2.3 Nonarchimedean representation theory of GL2

2.3 Nonarchimedean representation theory of GL2

As in the archimedean case, we are only interested in the special class of rep-

resentations of GL2(Q𝑝), which are admissible representations. A representation

𝜋 : 𝐺 → GL(𝑉) of 𝐺 on a complex vector space 𝑉 is smooth if the corresponding

map 𝐺 × 𝑉 → 𝑉 is continuous where we endow 𝑉 with the discrete topology.

A representation is admissible if it is smooth and dim𝑉𝐾 < ∞ for any compact

open subgroup 𝐾 ≤ 𝐺. We have a classification of admissible representations of

𝐺 = GL2(Q𝑝), which is somewhat similar to the classification of (𝔤, 𝐾)-modules

for GL2(R):

Theorem 2.3. Irreducible admissible representation of GL2(Q𝑝) is one of the

following:

1. Principal series𝜋(𝜒1, 𝜒2) = pInd

GL2(Q𝑝)
𝐵(Q𝑝) (𝜒1⊠𝜒2), for quasicharacters 𝜒1, 𝜒2 :

Q×
𝑝 → C× with 𝜒1𝜒−1

2
≠ | · |±1

,

2. (Twisted) Steinberg representations,

3. 1-dimensional representations of the form 𝑔 ↦→ 𝜒(det(𝑔)) for 𝜒 : Q×
𝑝 → C×,

4. Supercuspidal representations.

Among the above representations, we will focus on the principal series.

Especially, when 𝑝 ∤ 𝑁 and 𝜋𝑝 is a local component of an automorphic represen-

tation associated to a level 𝑁 modular form, then 𝜋𝑝 is an unramified principal

series, i.e. it has a nonzero 𝐾 = GL2(Z𝑝)-fixed vector (spherical vector). For such

representations, one can “linearize” it as a representation of the spherical Hecke
algebra

ℋ𝑝 = ℋ𝑝(GL2) := 𝐶∞
𝑐 (𝐾\GL2(Q𝑝)/𝐾),

where the multiplication on ℋ𝑝 is given by the convolution, and 𝑒𝑝 := 1

|𝐾 |1𝐾 is

an identity. ℋ𝑝 acts on the space of 𝐾-fixed vectors 𝜋𝐾𝑝 via

𝜋𝑝( 𝑓 )𝑣 =

∫
GL2(Q𝑝)

𝑓 (𝑔)𝜋𝑝(𝑔)𝑣d𝑔.

One can show that ℋ𝑝 is commutative: in fact, Cartan decomposition allows us

to understand the structure of ℋ𝑝 fairly well.

Theorem 2.4. ℋ𝑝 is generated by three characteristic functions:

𝑇𝑝 = 1
𝐾
(
𝑝

1

)
𝐾
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2.4 Fourier expansion and Whittaker model

𝑅𝑝 = 1
𝐾
(
𝑝
𝑝

)
𝐾

𝑅−1

𝑝 = 1
𝐾

(
𝑝−1

𝑝−1

)
𝐾
.

By the theorem, we have dim𝜋𝐾𝑝 = 1 and the representation of ℋ𝑝 is just

a character. In fact, unramified representations are completely determined by

the associated characters of ℋ𝑝 and it is enough to understand the characters.

Again, using Cartan decomposition, we can explicitly write down the structure

of ℋ𝑝 in terms of characteristic functions of certain double cosets, and write

down the action of these explicitly.

Theorem 2.5. Let 𝜋 be an irreducible admissible unramified representation

of GL2(Q𝑝). Then 𝜋 is either 1-dimensional representation of the form 𝑔 ↦→
𝜒(det(𝑔)) for an unramified quasicharacter 𝜒 : Q×

𝑝 → C×, or a principal series as-

sociated to unramified quasicharacters 𝜒1, 𝜒2. For the latter case, the associated

Hecke character acts on a spherical vector 𝜙◦ ∈ 𝜋𝐾 via

𝑇𝑝𝜙
◦ = 𝑝1/2(𝜒1(𝑝) + 𝜒2(𝑝))𝜙◦, 𝑅𝑝𝜙

◦ = 𝜒1(𝑝)𝜒2(𝑝)𝜙◦.

Under the Satake isomorphism, spherical Hecke algebra is isomorphic to

the representation ring of the Langlands dual group ĜL2 = GL2(C) [15]. The

isomorphism 𝒮 : ℋ𝑝 ≃ 𝑅(ĜL2) is given by

𝒮(𝑇𝑝) = 𝑝1/2 · 𝜒,
𝒮(𝑅𝑝) = det,

𝒮(𝑅−1

𝑝 ) = det
−1

where 𝜒 = 𝜒
std

is the character of the standard representation.

2.4 Fourier expansion and Whittaker model

Recall that holomorphic modular forms of level 1 are 1-periodic and admit a

Fourier expansion of the form

𝑓 (𝑧) =
∑
𝑛≥0

𝑎𝑛( 𝑓 )𝑞𝑛 =
∑
𝑛≥0

𝑎𝑛( 𝑓 )𝑒2𝜋𝑖𝑛𝑧

for 𝑧 ∈ H and 𝑞 = 𝑒2𝜋𝑖𝑧
. One can upgrade 𝑓 as a function on GL2(R)+ = {𝑔 ∈

GL2(R) : det(𝑔) > 0} via

𝜙 𝑓 (𝑔) = (𝑎𝑑 − 𝑏𝑐)𝑘/2(𝑐𝑖 + 𝑑)−𝑘 𝑓
(
𝑎𝑖 + 𝑏
𝑐𝑖 + 𝑑

)
, 𝑔 =

(
𝑎 𝑏

𝑐 𝑑

)
∈ GL2(R)+
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2.4 Fourier expansion and Whittaker model

and consider a “Fourier expansion” of this function as follows.

Let 𝜙 : GL2(R)+ → C be an automorphic form on GL2(R)1. For a fixed

𝑔 ∈ GL2(R)+, consider the following function

𝜙𝑔 : R→ C, 𝑥 ↦→ 𝜙

((
1 𝑥

0 1

)
𝑔

)
.

By the automorphy of 𝜙, 𝜙𝑔 becomes a function on Z\R ≃ S1
. Hence 𝜙𝑔 admits

a Fourier expansion

𝜙𝑔(𝑥) =
∑

𝜓∈Ẑ\R

𝑊𝜙,𝜓(𝑔)𝜓(𝑥)

where

𝑊𝜙,𝜓(𝑔) =
∫

1

0

𝜙𝑔(𝑥)𝜓(𝑥)d𝑥.

Here the sum is over all (unitary) characters of Z\R. Any such characters are of

the form 𝜓𝑛(𝑥) = 𝑒2𝜋𝑖𝑛𝑥
, and by the moderate growth condition on 𝜙, it gives

𝜙𝑔(𝑥) =
∑
𝑛≥0

𝑎𝑛(𝜙𝑔)𝑒2𝜋𝑖𝑛𝑥

where

𝑎𝑛(𝜙𝑔) =
∫

1

0

𝜙𝑔(𝑥)𝜓𝑛(𝑥)d𝑥 =

∫
1

0

𝜙

((
1 𝑥

0 1

)
𝑔

)
𝑒−2𝜋𝑖𝑛𝑥

d𝑥

which recovers the usual Fourier expansion when 𝜙 = 𝜙 𝑓 is associated with a

holomorphic modular form 𝑓 (𝑧). Also, there is an adelic version of this (replace

Z,R,GL2(R)+ with Q,A,GL2(A)), but we will concentrate on the archimedean
version for the latter purpose; Fourier expansions of the modular forms on

𝐺2(R) will be introduced in Section 6.2.

One can easily check that the function 𝑊𝜙,𝜓 : GL2(R)+ → C satisfy the

equation

𝑊𝜙,𝜓

((
1 𝑥

0 1

)
𝑔

)
= 𝜓(𝑥)𝑊𝜙,𝜓(𝑔)

for all 𝑥 ∈ R. Let 𝒲(𝜓) be the space of functions in GL2(R)+ satisfying the above

equation and having moderate growth, where GL2(R)+ acts as a right translation.

One can understood a representation 𝑉 of GL2(R)+ or the associated (𝔤𝔩
2
,O(2))-

modules through an embedding 𝑉 ↩→ 𝒲(𝜓), i.e. via Whittaker model, when

such 𝜓 exists. Equivalently, we can consider the space of Whittaker functionals

Wh(𝜋,𝜓) = Hom𝑁(R)(𝜋,𝜓) = {ℓ : 𝜋 → C, ℓ (𝜋(𝑛)𝑣) = 𝜓(𝑛)ℓ (𝑣) ∀𝑛 ∈ 𝑁(R)}
1Although I only explained the definition of GL2(A) automorphic forms, we have a similar

definition of automorphic forms on Lie groups. See Booher’s note [4] for the case of GL2(R).
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𝐺2: definitions and properties

for a representation 𝜋 of GL2(R)+, where 𝑁(R) = {( 1 𝑥
0 1

) : 𝑥 ∈ R} and 𝜓(( 1 𝑥
0 1

)) =
𝜓(𝑥). Then we have a uniqueness of a Whittaker model.

Theorem 2.6. Let 𝜋 be an irreducible admissible (𝔤, 𝐾)-module for GL2(R). Then

dimCWh(𝜋,𝜓) ≤ 1. When the dimension is one, the corresponding Whittaker

model can be given as a solution of a certain differential equation, which can be

expressed as a Bessel function.

Note that local multiplicity one is true for GL𝑛(𝐹) when 𝑛 ≥ 2 is arbitrary

and 𝐹 is a local field (both archimedean and non-archimedean). In fact, we also

have a global uniqueness result, which implies (strong) multiplicity one result

for GL𝑛 (see [8, Chapter 4]).

3 𝐺2: definitions and properties

Let’s move on to the modular forms on 𝐺2. First, we need to understand about

the group 𝐺2. In short:

𝐺2 is an automorphism group of octonions.

You may have heard about the word octonion, but not the definition itself (I

didn’t know the actual definition until I read about 𝐺2). First of all, over R, we

have two octonions: split one and non-split one. These two give two different

𝐺2: split 𝐺2 and non-split/compact 𝐺2. You can consider them as an analogue

of M2(R) vs Hamilton’s quaternion. In this note, we will only consider split
octonions and split 𝐺2, and modular forms on it. The main reference is Baez’s

article on octonions [1].

3.1 Split octonion

The split octonion, which we denote as O, was first constructed by Cayley and

Dickson. As a set, it is just two copies of Hamilton’sH. We define a multiplication

of two pairs as:

(𝑎, 𝑏) · (𝑐, 𝑑) = (𝑎𝑐 + 𝑑̄𝑏, 𝑑𝑎 + 𝑏𝑐).

(1, 0) becomes an identity. This multiplication is not even associative; but still

form a composition algebra: it admits a multiplicative quadratic norm. We first

define a conjugate of an element as

(𝑎, 𝑏)∗ = (𝑎̄ ,−𝑏)

8



3.2 Definition and dimension

and the norm is defined by N(𝑥) = 𝑥∗𝑥. If we write the elements of H in a usual

way, 𝑎 = 𝑎0 + 𝑎1𝑖 + 𝑎2 𝑗 + 𝑎3𝑘 and 𝑏 = 𝑏0 + 𝑏1𝑖 + 𝑏2 𝑗 + 𝑏3𝑘, then the norm N((𝑎, 𝑏))
becomes

N((𝑎, 𝑏)) = (𝑎2

0
+ 𝑎2

1
+ 𝑎2

2
+ 𝑎2

3
) − (𝑏2

0
+ 𝑏2

1
+ 𝑏2

2
+ 𝑏2

3
).

Especially, it gives a quadratic form of a signature (4, 4). We can decompose

an arbitrary element as a sum of the “real part” and the “imaginary part”:

(𝑎, 𝑏) = 𝑎0(1, 0) + (𝑎 − 𝑎0, 𝑏). Then the trace of an element becomes Tr((𝑎, 𝑏)) =
(𝑎, 𝑏)+(𝑎, 𝑏)∗ = 2𝑎0(1, 0). We will denote the space of purely imaginary octonions

(i.e. 𝑎0 = 0) by ℑ(O), which is orthogonal to ℜ(O) ≃ R. Note that we have a

trilinear form on O, given by

O ×O ×O→ R, (𝑥, 𝑦, 𝑧) ↦→ Tr((𝑥𝑦)𝑧)

(we have Tr((𝑥𝑦)𝑧) = Tr(𝑥(𝑦𝑧)), even if the multiplication is not associative).

3.2 Definition and dimension

Now, let us get back to the definition. 𝐺2 is an automorphism group of O:

𝐺2 = Aut(O) = {𝑔 ∈ GL(O) : 𝑔(𝑥 · 𝑦) = (𝑔𝑥) · (𝑔𝑦) ∀𝑥, 𝑦 ∈ O}.

Then any 𝑔 ∈ 𝐺2 also preserves conjugations, norms and inner products. Espe-

cially, we have an embedding 𝐺2 ↩→ SO(4, 4). We can do slightly better: ℑ(O) is

stable under 𝐺2, and we get 𝐺2 ↩→ SO(3, 4). Thus, we get a 7-dimensional faith-

ful representation of 𝐺2, which is in fact the smallest irreducible representation

of 𝐺2.

What is the dimension of 𝐺2? Since it sits inside SO(3, 4), we have an upper

bound dim SO(3, 4) =
(
8

2

)
= 28. In fact, the actual dimension is exactly half of it:

Proposition 3.1. dim𝐺2 = 14.

Proof. Each element 𝑔 ∈ 𝐺2 is completely determined by its image of a basic
triple {𝑒1, 𝑒2, 𝑒3}, that is, the set of orthonormal generators O: N(𝑒1) = N(𝑒2) =
N(𝑒3) = 1, and ⟨𝑒𝑖 , 𝑒 𝑗⟩ = 0 for all 𝑖 ≠ 𝑗. They generate O in the sense that

{1, 𝑒1, 𝑒2, 𝑒3, 𝑒1𝑒2, 𝑒2𝑒3, 𝑒3𝑒1, 𝑒1𝑒2𝑒3} becomes a R-basis of O. Now, consider how

many “choices” we have for 𝑒′
1
= 𝑔𝑒1, 𝑒

′
2
= 𝑔𝑒2, 𝑒

′
3
= 𝑔𝑒3:

1. 𝑒′
1

is a purely imaginary element of norm 1, so it is a codimenion 1 space

of ℑ(O) ≃ R7
, hence dimension is 6.

9



3.3 Lie algebra 𝔤2

2. 𝑒′
2

is a norm 1 element in Span(1, 𝑒1)⊥ ≃ R6
, hence the dimension is 6−1 = 5.

3. 𝑒′
3

is a norm 1 element in Span(1, 𝑒1, 𝑒2, 𝑒1𝑒2)⊥ ≃ R4
, hence the dimension

is 4 − 1 = 3.

Thus, we get dim𝐺2 = 6 + 5 + 3 = 14. □

3.3 Lie algebra 𝔤2

Let’s move on to the semisimple Lie algebra 𝔤2 = Lie(𝐺2). Instead of giving

detailed proofs of the known facts on 𝔤2, we will start with the Dynkin diagram

of 𝔤2 and see what we can say about 𝔤2 from it. Here is the tiny little cute Dynkin

diagram of 𝔤2:

Now, let us see what this diagram tells us about 𝔤2. First of all, we have two

vertices, so the rank of 𝔤2 is 2 and there are two simple roots. In addition, there

are three lines between two vertices, which tell us the angle between the simple

roots and the length ratio: the angle is 5𝜋/6, where the ratio between the lengths

of the simple roots is

√
3. Let’s call the longer one (resp. the shorter one) as 𝛼

(resp. 𝛼′
).

5𝜋/6 𝛼′

𝛼

By taking suitable Z-linear combinations, we can build more roots out of these

simple roots:

10



3.4 𝐺2 as a symmetry group of rolling balls

5𝜋/6 𝛼′

𝛼 𝛼 + 𝛼′ 𝛼 + 2𝛼′ 𝛼 + 3𝛼′

2𝛼 + 3𝛼′

Recall that the only possible degrees between two root vectors are multiples of

𝜋/6, and no scaled vectors of given roots other than the vector and its opposite

can appear as roots (reduced). The ones above the dashed line (i.e. ones with

names) are the chosen positive roots. This gives the root space decomposition

of 𝔤2, where we can find the dimension of 𝔤2 (hence Proposition 3.1) from this:

dim 𝔤2 = (rank) + (number of roots) = 2 + 12 = 14.

The highest root is 𝛽0 = 2𝛼+3𝛼′
(literally the “highest” one in the above diagram),

and the Weyl group of 𝔤2 is the symmetric group of a regular hexagon, which is

the dihedral group of order 12.

3.4 𝐺2 as a symmetry group of rolling balls

Here we introduce an another definition of 𝐺2, as a symmetry group of rolling
balls, discovered by Baez and Huerta [2]. This section is not necessary for the

upcoming discussions on modular forms2, but we include this because of its

own interest.

We have a large ball of radius 𝑅 > 1, and we are going to roll a unit ball

around it, without slipping or twisting. Then the corresponding configuration

space is S2 × SO(3): S2
for the point of contact and SO(3) for the rotation of the

small ball. Now, we define “lines” on the configuration space as paths along a

great circle on the large ball, i.e. two points are connected if one can move the

small ball from one state to the other state by rolling over a great circle (without

slipping or twisting, of course).

2Maybe related? Who knows!
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Heisenberg parabolic subgroup and cubic rings

Now, we consider another (incidence) geometry, comes from our one and

only3 octonion O. The “points” are 1-dimensional null subalgebra of ℑ(O): 𝑝𝑥 :=

⟨𝑥⟩ ⊂ ℑ(O) with N(𝑥) = 0. The “lines” are 2-dimensional null subalgebras

spanned: i.e. two points 𝑝𝑥 = ⟨𝑥⟩ and 𝑝𝑦 = ⟨𝑦⟩ are connected if and only if

𝑥𝑦 = 0 = 𝑦𝑥. Then the group 𝐺2 acts naturally on this space, which we denote

as

P𝐶 = {⟨𝑥⟩ : 0 ≠ 𝑥 ∈ ℑ(O),N(𝑥) = 0}.
One can check that this space is isomorphic to

S2 × S3

(𝑎, 𝑏) ∼ (−𝑎,−𝑏) ≃ RP
2 × S3

which is very close to the configuration space of the rolling ball, but not exactly.

To make them coincide, we can replace

• small unit ball with spinor: it needs to roll twice to get back to the original

position

• large ball with RP2

: in other words, rolling a pair of spinor together in sync

around the large ball.

Now we have the following amazing theorem.

Theorem 3.2 (Baez–Huerta [2]). The symmetry group of a rolling spinor over

RP2

is 𝐺2 if and only if 𝑅 = 3.

4 Heisenberg parabolic subgroup and cubic rings

For 𝐺2, we have a very special parabolic subgroup called Heisenberg parabolic
subgroup, which encode all information of Fourier coefficients of modular forms

on 𝐺2 (Section 6.2). Especially, the orbit of the character group under the adjoint

action (of Levi component) is in bĳection with the isomorphism classes of the

cubic rings, and these will parametrize Fourier coefficients of modualar forms on

𝐺2. Most of the discussions in the following can be found in Gan–Gross–Savin

[13].

4.1 Heisenberg parabolic subgroup of 𝐺2

Here 𝐺2 is considered as an algebraic group over Z. Recall that we have a

bĳection between (conjugacy classes of) parabolic subgroups as follows. Let 𝐺

3Of course, there are two, but let’s focus on the split one. Sorry for the non-split octonion...

12



4.1 Heisenberg parabolic subgroup of 𝐺2

be a split group with a maximal (split) torus𝑇 and a Borel subgroup 𝐵. Let 𝐽 ⊆ Δ

be a subset and define Φ(𝐽) := Z𝐽 ∩ Φ(𝐺, 𝑇), where Φ(𝐺, 𝑇) is the set of roots of

𝑇 ⊂ 𝐺. Then there exists a unique parabolic subgroup 𝑃𝐽 ⊇ 𝐵 with a unipotent

radical𝑈𝐽 such that

Lie𝑈𝐽 =
⊕

𝛼∈Φ+−(Φ(𝐽)∩Φ+)
𝔤𝛼

Theorem 4.1. We have a bĳection

{𝐽 ⊆ Δ} ↔ {parabolic subgroups of 𝐺 containing 𝐵}
𝐽 ↦→ 𝑃𝐽 .

This is an order-preserving bĳection: we have 𝑃∅ = 𝐵 and 𝑃Δ = 𝐺. The Levi

subgroup 𝐿𝐽 of 𝑃𝐽 is also equal to the subgroup of 𝐺 generated by the centralizer

𝐶𝐺(𝑇) and 𝐺𝛼 for 𝛼 ∈ 𝐽. See [14, Theorem 1.9.2] or Chapter 1.9 of loc. cit. for a

general theory that covers quasi-split 𝐺.

Let’s specialize it to the maximal parabolic subgroups. These subgroups

correspond to the subset of Δ of the form 𝜃 = Δ − {𝛼} for some 𝛼 ∈ Δ. The

parabolic subgroup 𝑃 = 𝑃𝜃 admits a Levi decomposition 𝑃 = 𝐿𝑈 , where

Lie𝐿 = Lie𝑇 ⊕ ©­«
⊕

𝛽:𝑚𝛼(𝛽)=0

𝔤𝛽
ª®¬

where 𝑚𝛼(𝛽) is the multiplicity of 𝛼 in the root 𝛽. The unipotent radical𝑈 has a

Lie algebra

𝑉 = Lie𝑈 =
⊕

𝛽:𝑚𝛼(𝛽)>0

𝔤𝛽 .

It admits an action of the center 𝑍(𝐿) ≃ G𝑚 , which gives a grading of 𝑉 :

𝑉 =
⊕
𝑛≥1

𝑉𝑛 ,

𝑉𝑛 =
⊕

𝛽:𝑚𝛼(𝛽)=𝑛
𝔤𝛽 .

We have a canonical 𝐿-stable filtration of 𝑈 , corresponds to the filtration of 𝑉 :

we have

𝑈 = 𝑈1 ⊃ 𝑈2 ⊃ · · · ⊃ 𝑈𝑑 ⊃ {1}

with Lie(𝑈𝑖/𝑈𝑖+1) = 𝑉𝑖 . The commutator on𝑈 gives a map𝑈𝑖 ×𝑈 𝑗 → 𝑈𝑖+𝑗 , and

this corresponds to the Lie bracket 𝑉𝑖 ×𝑉𝑗 → 𝑉𝑖+𝑗 by passing to the quotients.
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4.2 Cubic rings

In our case, we first fix our set of simple roots Δ = {𝛼, 𝛼′} above and have

a corresponding Borel subgroup 𝐵 ⊂ 𝐺2. We consider the maximal parabolic

subgroup 𝑃 = 𝐿𝑈 associated with the subset 𝐽 = Δ − {𝛼} = {𝛼′} ⊂ Δ. Then

Φ+ − (Φ(𝐽) ∩Φ+) = {𝛼, 𝛼 + 𝛼′, 𝛼 + 2𝛼′, 𝛼 + 3𝛼′, 𝛽0}

where the first four of them has 𝑚𝛼(−) = 1 (contribute to 𝑉1) and 𝑚𝛼(𝛽0) = 2

(contribute to 𝑉2). The filtration of𝑈 is

𝑈 = 𝑈1 ⊃ 𝑈2 = 𝑈𝛽0
⊃ {1}

where𝑈𝛽0
= 𝑍(𝑈) = [𝑈,𝑈], and𝑈ab = 𝑈/[𝑈,𝑈] ≃ 𝑉1 has dimension 4.

4.2 Cubic rings

The Levi subgroup 𝐿 acts on 𝑈 by conjugation, and this induces an action of

𝐿 on Hom(𝑈,G𝑎) = Hom(𝑈ab,G𝑎). We have the following description of the

representation:

Proposition 4.2. The representation 𝐿 on the space Hom(𝑈,G𝑎) = Hom(𝑈ab,G𝑎)
is isomorphic to the twisted representation of GL2 on the space of binary cubic

forms

𝑝(𝑥, 𝑦) = 𝑎𝑥3 + 𝑏𝑥2𝑦 + 𝑐𝑥𝑦2 + 𝑑𝑦3

defined as(
𝐴 𝐵

𝐶 𝐷

)
· 𝑝(𝑥, 𝑦) = 1

det(𝛾) · 𝑝(𝐴𝑥 + 𝐶𝑦, 𝐵𝑥 + 𝐷𝑦), 𝛾 =

(
𝐴 𝐵

𝐶 𝐷

)
∈ GL2.

Later, this space will serve as a parametrizing space of the Fourier coefficients

of modular forms on 𝐺2. Proposition 4.2 is even true over Z, and in fact, each

orbit is in bĳection with an isomorphism class of cubic rings: a ring which is a

free Z-module of rank 3.

Proposition 4.3 (Delone–Fadeev [10], Gan–Gross–Savin [13]). There is a bĳection

between the GL2(Z)-orbits of the space of binary cubic forms with integer coef-

ficients and the set of isomorphism class of cubic rings. This bĳection preserves

discriminants.

Proof. Here we only introduce the bĳection without proof. For a cubic ring 𝐴,

we can always find a good basis (1, 𝛼, 𝛽) so that 𝐴 = Z + Z · 𝛼 + Z · 𝛽 and
𝛼𝛽 = −𝑎𝑑
𝛼2 = −𝑎𝑐 + 𝑏𝛼 − 𝑎𝛽
𝛽2 = −𝑏𝑑 − 𝑑𝛼 + 𝑐𝛽
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Local representation theory of 𝐺2

for 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z, and the corresponding binary cubic form is 𝑓 (𝑥, 𝑦) = 𝑎𝑥3 +
𝑏𝑥2𝑦 + 𝑐𝑥𝑦2 + 𝑑𝑦3

. Both 𝐴 and 𝑓 has the same discriminant

Δ = 𝑏2𝑐2 + 18𝑎𝑏𝑐𝑑 − 4𝑎𝑐3 − 4𝑑𝑏3 − 27𝑎2𝑑2.

□

For a binary cubic form 𝑓 (𝑥, 𝑦) = 𝑎𝑥3 + 𝑏𝑥2𝑦 + 𝑐𝑥𝑦2 + 𝑑𝑦3
, we define it’s

content simply as 𝑒 = gcd(𝑎, 𝑏, 𝑐, 𝑑). Then the associated cubic ring 𝐴 can be

written as 𝐴 = Z + 𝑒𝐴0 for some other cubic ring 𝐴0. Especially, 𝑓 is primitive

(i.e. the content is 1) if and only if the corresponding cubic ring is Gorenstein (i.e.

Hom(𝐴,Z) is projective). We also have a local variant of the content, namely

𝑝-depth for a prime 𝑝, which is the exponent of 𝑝 in the prime factorization of

𝑒.

5 Local representation theory of 𝐺2

5.1 Archimedean

For a holomorphic modular form, the archimedean component of the associated

automorphic representation is a holomorphic discrete series. For a general Lie

group 𝐺 with a maximal compact subgroup 𝐾, when 𝐺/𝐾 possesses a 𝐺-invariant
holomorphic structure, one can construct holomorphic discrete series using holo-

morphic line bundles on the homogeneous space𝐺/𝐾 (e.g. see [29]). One can try

a similar construction of discrete series for 𝐺2(R), where it has a maximal com-

pact subgroup 𝐾 = SU4 = (SU2 × SU2)/{±1}. Unfortunately, this does not work:

we do not have a 𝐺2(R)-invariant holomorphic structure on 𝐺2(R)/𝐾. Instead,

Gross and Wallach [17] considered the “next-best” discrete series representation

for 𝐺2(R): quaternionic discrete series representation. These representations are

constructed via H
1

of certain holomorphic line bundles on the “twistor space

covering”D = 𝐺2(R)/(𝐿∩𝐾)↠ 𝐺2(R)/𝐾, which is a P1(C)-bundle over𝐺2(R)/𝐾.

These are parametrized by integers 𝑘 ≥ 2,4 which have infinitesimal character

𝜌 + (𝑘 − 2)𝛽0 where 𝜌 = 1

2

∑
𝛽∈Φ+ 𝛽 = 3𝛼 + 5𝛼′

is the Weyl root. Its restriction to

𝐾 decomposes as

(𝜋𝑘)|𝐾 ≃
⊕
𝑛≥0

Sym
2𝑘+𝑛(C2) ⊠ Sym

𝑛(Sym
3C2),

4There are also limits of discrete series representations when 𝑘 = 0 and 1, but we’ll ignore

these representations.
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5.2 Nonarchimedean

and the minimal 𝐾-type is the representation

V𝑘 := Sym
2𝑘(C2) ⊠ 1 of (SU2 × SU2)/{±1}

of dimension 2𝑘 + 1. 𝜋𝑘 is a submodule of Ind
𝐺2(R)
𝑃(R) 𝜆𝑘 , where

𝜆𝑘 = (sgn)𝑘 · | det |−𝑘−1.

Recall that the adjoint representation of 𝐿(R) on Hom(𝑈(R),R) is isomorphic

to the twisted representation of GL2(R) on the space of binary cubic forms with

coefficients in R (Proposition 4.2). We have Hom(𝑈(R),R) ≃ Hom(𝑈(R), S1) via

𝑓 ↦→ 𝜒 = 𝑒2𝜋𝑖 𝑓
(non-algebraic isomorphism), which takes the lattice Hom(𝑈(Z),Z)

to Hom(𝑈(Z)\𝑈(R), S1) = {𝜒 ∈ Hom(𝑈(R), S1) : 𝜒 |𝑈(Z) = 1}. The representa-

tion of 𝐿(Z) on the later subgroup is isomorphic to twisted action of GL2(Z) on

the space of integral binary cubic forms. Then a character 𝜒 is called generic
if the corresponding binary cubic form has nonzero discriminant (which we

will denote as Δ(𝜒)).5 Then the 𝐿(R)-action preserves sign of the discriminant,

hence the set of generic characters break up into two orbits: those with Δ > 0

(correponds to the real cubic algebra R3
) and those with Δ < 0 (corresponds

to the cubic algebra R × C). Wallach proved the following uniqueness result of

Whittaker models of 𝜋𝑘 [32]:

Proposition 5.1. Let 𝜒 be a generic character of𝑈(R), and 𝑘 ≥ 0. Let

Wh𝑘,𝜒 = Hom𝑈(R)(𝜋𝑘 , 𝜒) = {ℓ : 𝜋𝑘 → C, ℓ (𝜋𝑘(𝑢)𝑣) = 𝜒(𝑢)ℓ (𝑣) ∀𝑢 ∈ 𝑈(R)}

be the space of 𝜒-Whittaker functionals on 𝜋𝑘 . Then

• If Δ(𝜒) < 0, dimCWh𝑘,𝜒 = 0.

• If Δ(𝜒) > 0, dimCWh𝑘,𝜒 = 1, and it affords the representation (sgn)𝑘 of

𝑆3 ≃ Stab(𝜒) ⊂ GL2(R).

The above result will be used to define Fourier coefficients of modular forms

on 𝐺2 (Section 6.2).

5.2 Nonarchimedean

In Section 2.3, we studied (unramified) representations of GL2(Q𝑝) and Hecke

algebras. A similar theory for 𝐺2 is developed in [13], which we are going to

5Usually, a character𝜓 : 𝑁(𝐹) → C× is called generic if it is nontrivial on each root (sub)group

𝑁𝛽 ≤ 𝑁 , and I think our definition also fits into this definition, but I haven’t checked myself.
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5.2 Nonarchimedean

introduce here. Using this, we can describe the action of Hecke operators on 𝐺2

modular forms on their Fourier coefficients (Section 6.3).

We have two fundamental representations of𝐺2: the 7-dimensional standard

representation (corresponds to the embedding 𝐺2 ↩→ SO7 explained in 3.2), and

the 14-dimensional adjoint representation. Let 𝜒1 and 𝜒2 be the characters of

these representations, respectively. Then the representation ring 𝑅(𝐺2) of the

dual group 𝐺2 = 𝐺2(C) (dual of 𝐺2 is again 𝐺2!) is a polynomial ring in 𝜒1 and

𝜒2, with highest weights 𝜆1 and 𝜆2 identified with coroots

𝜆1 = 𝛽∨
0
= (2𝛼 + 3𝛼′)∨

𝜆2 = (𝛼 + 2𝛼′)∨.

We have the following identities between 𝜒1 and 𝜒2:
∧2𝜒1 = 𝜒1 + 𝜒2

∧3𝜒1 = 𝜒2

1
− 𝜒2

∧7−𝑛𝜒1 = ∧𝑛𝜒1.

For the spherical Hecke algebra ℋ𝑝(𝐺2) := 𝐶∞
𝑐 (𝐺2(Z𝑝)\𝐺2(Q𝑝)/𝐺2(Z𝑝)), Gross

[15] computed Satake transform 𝒮𝐺2
: ℋ𝑝(𝐺2) ≃ 𝑅(𝐺2) as{

𝜑1 = 𝑝3𝜒1 = 𝒮𝐺2
(𝐾𝜆1(𝑝)𝐾) + 1,

𝜑2 = 𝑝5𝜒2 = 𝒮𝐺2
(𝐾𝜆2(𝑝)𝐾) + 𝑝4 + 𝜑1.

Using the equation above, we can find a decomposition of the double cosets

𝐾𝜆𝑖(𝑝)𝐾 into single 𝐾-cosets of the form 𝑢𝑙𝐾, where 𝑢 ∈ 𝑈(Q𝑝) and 𝑙 ∈ 𝐿(Q𝑝) ≃
GL2(Q𝑝), which will be used to compute the action of the corresponding Hecke

operators on Fourier coefficients (Section 6.3). We can use relative Satake trans-

form corresponds to the restriction map 𝑅(𝐺2) → 𝑅(𝐿), and this gives the num-

ber of distinct cosets in the decomposition of 𝐾𝜆𝑖(𝑝)𝐾 for each 𝑙. More precisely,

the relative Satake transform 𝒮𝐺2/𝐿 : ℋ𝑝(𝐺2) → ℋ𝑝(𝐿) is defined as

𝒮𝐺2/𝐿(𝑐[𝑡])(𝑙) = |𝛿𝑃(𝑙)|1/2 ·
∫
𝑈

𝑐[𝑡](𝑙𝑢)d𝑢

and it fits into the following commutative diagram

ℋ𝑝(𝐺2) 𝑅(𝐺2(C))

ℋ𝑝(𝐿) 𝑅(𝐿(C))

𝒮𝐺
2

𝒮𝐺
2
/𝐿 Res

𝒮𝐿
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Modular forms on 𝐺2

Proposition 5.2. Fix 𝑡 ∈ 𝐺2 and 𝑙 ∈ 𝐿. Let 𝑐[𝑡] = 1𝐾𝑡𝐾 ∈ ℋ𝑝(𝐺2, 𝐾) be the

characteristic function. Then

𝒮𝐺2/𝐿(𝑐[𝑡])(𝑙) = |𝛿𝑃(𝑙)|1/2 · #{𝑢𝑙𝐾 ⊂ 𝐾𝑡𝐾, 𝑢 ∈ 𝑈}

Combining Proposition 5.2 with the restriction formula

Res(𝜒1) = det+𝜒 + 1 + 𝜒∗ + det
−1

Res(𝜒2) = Res(𝜒1) + det ·𝜒 + 𝜒 · 𝜒∗ + det
−1 · 𝜒∗ − 1,

we can compute the number of distinct cosets of the form 𝑢𝑙𝐾 in 𝐾𝜆1(𝑝)𝐾 and

𝐾𝜆2(𝑝)𝐾 for given 𝑙 (Corollary 13.3 and 13.4 of [13]). One can find single cosets

for each 𝑙 with carefully chosen 𝑢 match with the number: for example, we have

the following result [13, Proposition 14.2].

Proposition 5.3. Let 𝑙 lies in the double coset of either(
𝑝

𝑝

)
,

(
𝑝

1

)
,

(
1

𝑝−1

)
,

(
𝑝−1

𝑝−1

)
in 𝐿 ≃ GL2, and 𝑢 lies in 𝑈(Z𝑝), then 𝑢𝑙𝐾 is contained in the 𝐾-double coset

of 𝜆1(𝑝) in 𝐺. For such 𝑙, the representatives 𝑢 of the distinct right cosets of

𝑈(Z𝑝) ∩ 𝑙𝑈(Z𝑝)𝑙−1
in 𝑈(Z𝑝) give the distinct right cosets of the form 𝑢𝑙𝐾 in

𝐾𝜆1(𝑝)𝐾.

For other 𝑙 ∈ 𝐿 and the double coset 𝐾𝜆2(𝑝)𝐾, 𝑢 can be chosen as elements in

certain root groups (See [13, Section 14] for details).

6 Modular forms on 𝐺2

6.1 Definition

Fix the weight 𝑘 ≥ 2 and a quaternionic discrete series representation 𝜋𝑘 of 𝐺2(R)
introduced in Section 5.1. Let A = A(𝐺2) be the space of automorphic forms on

𝐺2: the are the functions on 𝐺2(A) which are

• left 𝐺2(Q)-invariant,

• right-invariant under some open compact group 𝐾 𝑓 ⊆ 𝐺2(Afin
),

• annihilated by an ideal 𝐽 ⊆ 𝒵(𝔤2) of finite codimension in the center 𝒵(𝔤2) of

the universal enveloping algebra of 𝔤2 = Lie𝐺2(R),
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6.2 Fourier coefficients and expansion

• has uniform moderate growth.

Note that the definition is slightly different from the literature, e.g. we are not

assuming 𝐾-finiteness (compare this with the definition in Section 2.1). More

explanation can be found in [13, Section 7]. Also, we are mainly interested in

the modular forms of “level 1”, i.e. when 𝐾 𝑓 = 𝐺2(Ẑ).

Definition 6.1. The space of modular forms of weight 𝑘 and level 1 on 𝐺2 is

𝑀𝑘(𝐺2) = Hom
𝐺2(R)×𝐺2(Ẑ)(𝜋𝑘 ⊗ C,A),

and the subspace of cusp forms is

𝑆𝑘(𝐺2) = Hom
𝐺2(R)×𝐺2(Ẑ)(𝜋𝑘 ⊗ C,A0).

By definition, 𝑓 ∈ 𝑀𝑘(𝐺2) is neither a function on 𝐺2(R) nor 𝐺2(A), but a

𝐺2(R) × 𝐺2(Ẑ)-equivariant linear map from 𝜋𝑘 ⊗ C to A. Once you choose a

vector 𝑣 ∈ 𝜋𝑘 , then 𝑓 (𝑣) is indeed an automorphic form on 𝐺2. By the theorem

of Harish-Chandra [5, Theorem 1.7], these spaces are finite dimensional. Also,

it admits an action of the spherical Hecke algebra

ℋ(𝐺2(Afin
), 𝐺2(Ẑ)) ≃

⊗̂
𝑝

ℋ𝑝(𝐺2)

and the action on Fourier coefficients will be explained in Section 6.3.

6.2 Fourier coefficients and expansion

Let 𝑓 ∈ 𝑀𝑘(𝐺2) and 𝑣 ∈ 𝜋𝑘 . Then 𝑓 (𝑣) can be viewed as a function on the double

coset space

𝐺2(Q)\𝐺2(A)/𝐺2(Ẑ) ≃ 𝐺2(Z)\𝐺2(R)

where the homeomorphism comes from the strong approximation theorem. For

𝜒 ∈ Hom(𝑈(Z)\𝑈(R),C×) define a linear functional ℓ𝜒 on 𝜋𝑘 as

ℓ𝜒(𝑣) =
∫
𝑈(Z)\𝑈(R)

𝑓 (𝑣)(𝑢)𝜒(𝑢)d𝑢.

Then ℓ𝜒 ∈ Wh𝑘,𝜒, and for 𝛾 ∈ 𝐿(Z), ℓ𝛾·𝜒 = 𝛾 · ℓ𝜒. By Proposition 5.1, ℓ𝜒 = 0

for Δ(𝜒) < 0, and ℓ𝜒 lies in a 1-dimensional space if Δ(𝜒) > 0. For the latter

case, fix 𝜒0 with Δ(𝜒0) > 0 and a basis 𝑙0 of Wh𝑘,𝜒0
. There exists 𝑔 ∈ 𝐿(R) with

𝜒 = 𝑔 ·𝜒0, well defined up to the right multiplication by Stab(𝜒0) ≃ 𝑆3. The linear
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6.2 Fourier coefficients and expansion

functional 𝜆𝑘(𝑔) · (𝑔 · ℓ0) is a well-defined basis element of Wh𝑘,𝜒 (independent

of the choice of 𝑔), hence

ℓ𝜒 = 𝑐𝜒( 𝑓 ) · 𝜆𝑘(𝑔) · (𝑔 · ℓ0)

for some constant 𝑐𝜒( 𝑓 ). For even 𝑘, 𝑐𝜒( 𝑓 ) depends only on the 𝐿(Z)-orbit of

𝜒, and these orbits are indexed by (isomorphism classes of) cubic rings 𝐴 with

disc(𝐴) > 0, so 𝐴 ⊗ R ≃ R3
. We write 𝑐𝐴( 𝑓 ) for the constants 𝑐𝜒( 𝑓 ) and call it

as 𝐴-th Fourier coefficient of 𝑓 . For odd 𝑘, the situation is more subtle, since

𝑐𝜒( 𝑓 ) depends on the 𝐿(Z)-orbit and the orientation of 𝐴, i.e. the choice of a basis

element 𝑒 of

∧
3 𝐴 ≃ Z. In this case, coefficients are only determined up to sign.

How much do Fourier coefficients 𝑐𝐴( 𝑓 ) know about 𝑓 itself? First of all,

cusp forms are determined by the Fourier coefficients:

Proposition 6.2 (Gan–Gross–Savin [13, Proposition 8.4]). If 𝑓 ∈ 𝑆𝑘(𝐺2) satisfies

𝑐𝐴( 𝑓 ) = 0 for all cubic rings 𝐴, then 𝑓 = 0.

The proof in [13] utilizes another maximal parabolic subgroup𝑄 = 𝑃Δ−{𝛼′} =

𝑃{𝛼}. Also, we have the following analogue of Hecke bound of Fourier coefficients

for cusp forms:6

Proposition 6.3 (Gan–Gross–Savin [13, Proposition 8.6]). For 𝑓 ∈ 𝑆𝑘(𝐺2), there

exists a constant 𝐶 𝑓 > 0 such that

|𝑐𝐴( 𝑓 )| ≤ 𝐶 𝑓 · |disc(𝐴)|(𝑘+1)/2

for any totally real cubic ring 𝐴.

Recall that we have Fourier expansions of holomorphic modular forms, where

the basis elements are exponential functions. Similarly, we have a Fourier ex-

pansion for Maass wave forms (i.e. non-holomorphic analogue of holomorphic

modular forms), with the basis elements given by Bessel functions (see [6, Sec-

tion 1.9]). Pollack developed a similar theory for all exceptional groups, includ-

ing 𝐺2, 𝐹4, 𝐸6, 𝐸7, and 𝐸8 [24]. To do this, he considered the modular forms

𝑓 ∈ 𝑀𝑘(𝐺2) as the associated vector-valued functions 𝐹 = 𝐹 𝑓 : 𝐺2(A) → V∨
𝑘

via 𝐹 𝑓 (𝑔)(𝑣) := 𝑓 (𝑣)(𝑔). Especially, he consider the restriction of 𝐹 onto the real

6I believe that this bound is not optimal - we may expect a smaller exponent possibly

from Ramanujan conjecture (as in the case of modular forms). Unfortunately, I have no idea

what the optimal exponent would be. Note that we expect generalized Ramanujan conjecture

(temperedness of local factors 𝜋𝑝 of 𝜋 = 𝜋 𝑓 ) for 𝐺2 [28], but it is not clear how this could be

related to the Fourier coefficients.
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6.2 Fourier coefficients and expansion

points𝐺2(R). He proved that, for each character 𝜒 : 𝑈(Z)\𝑈(R) → S1
, there exist

(vector-valued) basis functions 𝑊𝜒 on 𝐺2(R) are vector-valued functions which

are given by solutions of Schmid operators. He solved the equations explicitly and

expressed the solutions in terms of Bessel functions. Before we state the result,

note that we have a GL2-invariant symplectic form on𝑉1(R) ≃ det
−1 ⊗Sym

3(R2),
given by ⟨ 𝑓 , 𝑓 ′⟩ = 𝑎𝑑′ − 1

3
𝑏𝑐′ + 1

3
𝑐𝑏′ − 𝑑𝑎′ for 𝑓 = 𝑎𝑥3 + 𝑏𝑥2𝑦 + 𝑐𝑥𝑦2 + 𝑑𝑦3

and

𝑓 ′ = 𝑎′𝑥3 + 𝑏′𝑥2𝑦 + 𝑐′𝑥𝑦2 + 𝑑′𝑦3
. Now, we have the following theorem.

Theorem 6.4 (Pollack [24, 25]). Let 𝐹 be a modular form on 𝐺2 of weight 𝑘 and

level 1, considered as a vector-valued function 𝐹 : 𝐺2(R) → V∨
𝑘
. Let

𝐹0(𝑔) =
∫
𝑈𝛽

0
(Z)\𝑈𝛽

0
(R)
𝐹(𝑛𝑔)d𝑛

be the constant term of 𝐹 along the center𝑈𝛽0
= 𝑍(𝑈) of the unipotent part of the

Heisenberg parabolic subgroup. For 𝑥 ∈ 𝑉1(R) ≃ Lie(𝑈(R)ab) and 𝑔 ∈ 𝐿(R) ≃
GL2(R), 𝐹0 has a Fourier expansion of the form

𝐹0(exp(𝑥)𝑔) = 𝐹00(𝑔) +
∑
𝐴

𝑐𝐴(𝐹)𝑒−2𝜋𝑖⟨ 𝑓𝐴 ,𝑥⟩𝑊𝐴(𝑔)

where

• The sum is over all cubic rings with 𝐴 ⊗ R ≃ R3
.

• 𝑐𝐴(𝐹) is the 𝐴-th Fourier coefficient of 𝐹.

• 𝑓𝐴 is the binary cubic form corresponds to 𝐴.

• 𝑊𝐴 : GL2(R) → V∨
𝑘

is the basis function given by

𝑊𝐴(𝑔) =
∑

−𝑘≤𝑣≤𝑘
𝑊𝐴,𝑣(𝑔)

𝑥𝑘+𝑣
ℓ

𝑦𝑘−𝑣
ℓ

(𝑘 + 𝑣)!(𝑘 − 𝑣)!

with𝑊𝐴,𝑣 : GL2(R) → C,

𝑊𝐴,𝑣(𝑔) = det(𝑔)𝑘 | det(𝑔)|
( | 𝑗(𝑔, 𝑖)𝑝𝐴(𝑔 · 𝑖)|
𝑗(𝑔, 𝑖)𝑝𝐴(𝑔 · 𝑖)

)𝑣
𝐾𝑣(| 𝑗(𝑔, 𝑖)𝑝𝐴(𝑔 · 𝑖)|).

Here 𝑥ℓ , 𝑦ℓ are standard basis of weight vectors of the standard representation

of SU2 (so that {𝑥𝑘+𝑣
ℓ

𝑦𝑘−𝑣
ℓ

}−𝑘≤𝑣≤𝑘 are a basis of V𝑘)7, 𝑝𝐴(𝑧) = 2𝜋 𝑓𝐴(𝑧, 1) =

2𝜋(𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑) is the 2𝜋-multiple of the cubic polynomial corresponds

to 𝐴, 𝑗(𝑔, 𝑖) = det(𝑔)−1(𝑐𝑖 + 𝑑)3 is the automorphy factor of 𝑔 =
(
𝑎 𝑏
𝑐 𝑑

)
, and

𝐾𝑣(𝑦) = 1

2

∫ ∞
0

𝑡𝑣𝑒−𝑦(
𝑡+𝑡−1

2
) d𝑡
𝑡 is the 𝑣-th Bessel function.

7ℓ for long root SU2.
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6.3 Hecke operators and Fourier coefficients

• 𝐹00
is the constant term of 𝐹0

, which has a form of

𝐹00(𝑔) = Φ(𝑔)
𝑥2𝑛
ℓ

(2𝑛)! + 𝛽
𝑥𝑛
ℓ
𝑦𝑛
ℓ

𝑛!𝑛!

+Φ′(𝑔)
𝑦2𝑛
ℓ

(2𝑛)!

where 𝛽 ∈ C is a constant and Φ : 𝐿(R) ≃ GL2(R) → C is associated with

a holomorphic modular form of weight 3𝑘, and Φ′(𝑔) = Φ(𝑔𝑤0) with 𝑤0 =( −1 0

0 1

)
. When 𝐹 ∈ 𝑆𝑘(𝐺2) is a cusp form, then this term vanishes.

6.3 Hecke operators and Fourier coefficients

For a holomorphic modular form 𝑓 =
∑
𝑛≥1

𝑎𝑛( 𝑓 )𝑞𝑛 ∈ 𝑆𝑘(SL2(Z)), the Hecke

operator 𝑇𝑝 acts on the coefficients via

𝑎𝑛(𝑇𝑝 𝑓 ) = 𝑎𝑛𝑝( 𝑓 ) + 𝑝𝑘−1𝑎𝑛/𝑝( 𝑓 ),

where 𝑇𝑝 is the Hecke operator corresponds to the characteristic function of

GL2(Z𝑝)
( 𝑝

1

)
GL2(Z𝑝) in the spherical Hecke algebraℋ(GL2(Q𝑝),GL2(Z𝑝)). Gan–

Gross–Savin [13] gave a similar description for the modular forms on 𝐺2, using

the Hecke algebra structure and explicit coset decompositions in Section 5.2.

Proposition 6.5 (Gan–Gross–Savin [13, Proposition 15.6-15.8]). Let 𝐴 be a cubic

ring of 𝑝-depth zero, and for 𝑖 ≥ 0 define 𝐴𝑖 := Z + 𝑝 𝑖𝐴, which has 𝑝-depth 𝑖.

For 𝑘 even and 𝑓 ∈ 𝑀𝑘(𝐺2),

𝑐𝐴𝑖 (𝜒1 | 𝑓 ) = 𝑝2𝑘−1𝑐𝐴𝑖−1
( 𝑓 ) + 𝑝𝑘−1

∑
𝐴𝑖⊂𝐵⊂𝐴𝑖−1

𝑐𝐵( 𝑓 ) + 𝑐𝐴𝑖 ( 𝑓 )

+ 𝑝−𝑘
∑

𝐴𝑖+1⊂𝐵⊂𝐴𝑖
𝑐𝐵( 𝑓 ) + 𝑝1−2𝑘𝑐𝐴𝑖+1

( 𝑓 ) (𝑖 ≥ 1),

𝑐𝐴(𝜒1 | 𝑓 ) = 𝑝𝑘−1

∑
𝐴⊂𝑝𝐵

𝑐𝐵( 𝑓 ) + 𝑝−1(𝑛𝐴 − 1)𝑐𝐴( 𝑓 )

+ 𝑝−𝑘
∑

𝐴1⊂𝐵⊂𝐴
𝑐𝐵( 𝑓 ) + 𝑝1−2𝑘𝑐1( 𝑓 ),

𝑐𝐴𝑖 (𝜒2 | 𝑓 ) = 𝑐𝐴𝑖 (𝜒1 | 𝑓 ) + 𝑝3𝑘−2

∑
𝐴𝑖−1⊂𝐵⊂𝐴𝑖−2

𝑐𝐵( 𝑓 ) + 𝑝−1

∑
𝐴𝑖+1⊂𝐶⊂𝐴𝑖−1

𝑐𝐶( 𝑓 )

+ 𝑝−1𝑐𝐴𝑖 ( 𝑓 ) + 𝑝1−3𝑘
∑

𝐴𝑖+2⊂𝐵⊂𝐴𝑖+1

𝑐𝐵( 𝑓 ) (𝑖 ≥ 2)

where 𝑛𝐴 = #{𝐵 : 𝐴1 ⊂ 𝐵 ⊂ 𝐴}. For the last equation, each 𝐶 in the second sum

is a ring with 𝐶/𝐴𝑖+1 ≃ Z/𝑝2Z.
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For example, when 𝐴/𝑝𝐴 is a field, the first equation simplifies as

𝑐𝐴(𝜒1 | 𝑓 ) = −1

𝑝
𝑐𝐴( 𝑓 ) + 𝑝1−𝑘𝑐𝐴1

( 𝑓 ).

We8 have a similar description of 𝑐𝐴(𝜒2 | 𝑓 ) and 𝑐𝐴1
(𝜒2 | 𝑓 ), but more complicated.

When 𝐴/𝑝𝐴 is a field, then [13, Corollary 15.9]

𝑐𝐴(𝜒2 | 𝑓 ) =
(

1

𝑝
+ 1

𝑝2

)
𝑐𝐴( 𝑓 ) − 𝑝−2𝑘𝑐𝐴1

( 𝑓 ) + 𝑝1−3𝑘
∑

𝐴2⊂𝐵⊂𝐴1

𝑐𝐵( 𝑓 )

𝑐𝐴1
(𝜒2 | 𝑓 ) = −𝑝2𝑘−2𝑐𝐴( 𝑓 ) +

(
1 + 1

𝑝

)
𝑐𝐴1

( 𝑓 ) + 𝑝1−2𝑘𝑐𝐴2
( 𝑓 )

+
∑

𝐴3⊂𝐵⊂𝐴2

𝑝1−3𝑘𝑐𝐵( 𝑓 ).

When 𝑓 is a Hecke eigenform, we have a stronger result than Proposition 6.2.

Theorem 6.6 (Gan–Gross–Savin [13, Theorem 16.2]). Let 𝑓 ∈ 𝑀𝑘(𝐺2) be a Hecke

eigenform. If 𝑐𝐴( 𝑓 ) = 0 for all Gorenstein rings, then all the Fourier coefficients

of 𝑓 vanish. In particular, if 𝑓 is a nonzero cuspidal Hecke eigenform, then

𝑐𝐴( 𝑓 ) ≠ 0 for some Gorenstein ring 𝐴.

The analogous result is true for the holomorphic modular forms: if 𝑓 ∈ 𝑆𝑘(Γ1)
is a Hecke eigenform, then 𝑎1( 𝑓 ) ≠ 0. This is because 𝑎𝑛( 𝑓 ) is completely

determined by 𝑎1( 𝑓 ) and the Hecke eigenvalues of 𝑓 , and the above theorem is

also proved with a similar argument.

6.4 Examples

If we cannot find any single example of a nonzero modular form, then there’s

no reason to develop such a theory. Here we introduce examples from [13]:

Eisenstein series and theta series.

Let 𝑘 ≥ 2 be an even integer. Recall that we have an embedding (Section 5.1)

𝑖 : 𝜋𝑘 ↩→ Ind
𝐺2(R)
𝑃(R) 𝜆𝑘 .

The character 𝜆𝑘 is the archimedean component of the global character

𝜒𝑘 = | det |−𝑘−1

: 𝑃(A) → C×

8To be precise, they [13] have, not me.
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which is unramified at all finite places. Consider the induced representation

𝐼(𝑘) = Ind
𝐺2(A)
𝑃(A) 𝜒𝑘 =

⊗
𝑣

𝐼𝑣(𝑘).

For each finite 𝑝 < ∞, choose the unique normalized vector 𝜑◦
𝑝 ∈ 𝐼𝑝(𝑘) fixed by

𝐺2(Z𝑝) and 𝜑◦
𝑝(1) = 1. For 𝜑∞ ∈ 𝜋𝑘 , let

𝜑 = 𝑖(𝜑∞) ⊗
(⊗

𝑝

𝜑◦
𝑝

)
∈ 𝐼(𝑘)

and form the Eisenstein series

𝐸(𝜑, 𝑔) =
∑

𝛾∈𝑃(Q)\𝐺2(Q)
𝜑(𝛾𝑔).

This converges absolutely when 𝑘 > 2, and defines an element of 𝒜 right-

invariant under 𝐺2(Ẑ). Thus, we get a nonzero element

𝐸𝑘 : 𝜑∞ ↦→ 𝐸(𝜑, 𝑔)

in 𝑀𝑘 . Now, for each character 𝜒 : 𝑈(R) → S1
trivial on𝑈(Z), we can consider it

as a character on 𝑈(A) trivial on 𝑈(Q) and 𝑈(Ẑ) (by strong approximation). To

compute the corresponding Fourier coefficients, one needs to observe

ℓ𝜒(𝜑) =
∫
𝑈(Q)\𝑈(A)

𝐸(𝑢)𝜒(𝑢)d𝑢

=

∫
𝑈(Q)\𝑈(Q)

©­«
∑

𝑃2(Q)\𝐺2(Q)
𝜑(𝛾𝑢)ª®¬ 𝜒(𝑢)d𝑢.

The double coset space𝑃(Q)\𝐺2(Q)/𝑃(Q)has four representatives, say𝑤0, 𝑤1, 𝑤2, 𝑤3,

with

𝑃(Q)𝑤0𝑃(Q) = 𝑃(Q)𝑤0𝑈(Q)

an open orbit 𝑃, and only this double coset contributes to the integral above.

Hence we get a factorizable integral

ℓ𝜒(𝜑) =
∫
𝑈(A)

𝜑(𝑤0𝑢)𝜒(𝑢)d𝑢

=

(∫
𝑈(R)

𝜑∞(𝑤0𝑢∞)d𝑢∞
) (∏

𝑝<∞

∫
𝑈(Q𝑝)

𝜑◦
𝑝(𝑤0𝑢𝑝)𝜒(𝑢𝑝)d𝑢𝑝

)
.

Jiang and Rallis [19] computed the non-archimedean factors above (under certain

assumptions):
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Proposition 6.7 ([19, Theorem 2]). Assume 𝜒 corresponds to a maximal cubic

ring 𝐴. If 𝐴 ⊗ Q𝑝 is one of the following:
Q𝑝 ×Q𝑝 ×Q𝑝
Q𝑝 ×Q𝑝2 𝑝 ≠ 2

Q𝑝3 Q𝑝 containing all cube roots of unity,

(Q𝑝𝑚 is the unique unramified extension of Q𝑝 of degree 𝑚), then∫
𝑈(Q𝑝)

𝜑◦
𝑝(𝑤0𝑢𝑝)𝜒(𝑢𝑝)d𝑢𝑝 = 𝑐𝑝 · 𝜁𝐴⊗Z𝑝 (𝑘),

where 𝑐𝑝 is an explicit universal constant independent of 𝐴.

As a result, up to a constant, we have

ℓ𝜒(𝜑) = 𝜁𝐴(𝑘) ·
(∫

𝑈(R)
𝜑∞(𝑤0𝑢∞)𝜒(𝑢∞)d𝑢∞

)
and it remains to compute the archimedean factor. It defines a nonzero linear

form

𝜑∞ ↦→
∫
𝑈(R)

𝜑∞(𝑤0𝑢∞)𝜒(𝑢∞)d𝑢∞

in Hom𝑈(R)(𝐼∞(𝑘), 𝜒), but unfortunately, we do not know whether its restriction

to 𝜋𝑘 is also nonzero or not. If we assume that the restriction is also nonzero

for some 𝜒 with Δ(𝜒) > 0 (recall Proposition 5.1 that the space of the Whittaker

functional is zero if Δ(𝜒) < 0), then the restriction is nonzero for all 𝜒 with

Δ(𝜒) > 0, so is 𝑐𝐴(𝐸𝑘). Now, fix 𝜒0 that corresponds to the cubic form 𝑓 (𝑥, 𝑦) =
𝑥2𝑦 + 𝑥𝑦2

, and let ℓ0 = ℓ𝜒0
. Choose any 𝑔 ∈ 𝐿(R) ≃ GL2(R) with 𝜒 = 𝑔 · 𝜒0. Then

we can show that

(𝑔 · ℓ0)(𝜑) = 𝛿𝑃(𝑔)(𝑘−2)/3 ·
(∫

𝑈(R)
𝜑∞(𝑤0𝑢∞)𝜒(𝑢∞)d𝑢∞

)
and using (...), 𝛿𝑃 = | det |−3

and | det(𝑔)|2 = Δ(𝑔 ·𝜒0) = disc(𝐴), we can conclude

𝑐𝐴(𝐸𝑘) = 𝜁𝐴(𝑘) · disc(𝐴)𝑘−1/2 = 𝑐 · 𝜁𝐴(1 − 𝑘)

for some constant 𝑐, where the last equality comes from the functional equation

of 𝜁𝐴. Considering the Proposition 6.3 and 𝜁𝐴(𝑘) = 𝑂(1) (as disc(𝐴) → ∞), one

can conclude that 𝐸𝑘 is not a cusp form.

Gan, Gross, and Savin gave another example in [13], which are theta series

of weight 4. For a Gorenstein cubic ring 𝐴, 𝐴-th Fourier coefficients 𝑁(𝐴, 𝐽𝐸),
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𝑁(𝐴, 𝐽𝐼) of these theta series 𝜃𝐸 and 𝜃𝐼 count the number of embeddings of 𝐴

into certain Jordan structures 𝐽𝐼 and 𝐽𝐸 on the cubic Jordan algebra 𝐽 = 𝐻3(O) of

3 by 3 Hermitian matrices over octonions. Especially, the linear combination

𝑁(𝐴) = 91𝑁(𝐴, 𝐽𝐼) + 600𝑁(𝐴, 𝐽𝐸)

is studied in [16], and Gan proved that the corresponding theta series

𝜃 = 91𝜃𝐼 + 600𝜃𝐸

is a constant multiple of 𝐸4 [12]. Gan and Gross proved the corresponding

formula [16, Theorem 3]

𝑁(𝐴) = 2
7 · 3

3 · 5
2 · 7 · 13 · 𝜁𝐴(−3),

but without using the theory of 𝐺2 modular forms.

Unfortunately, all the examples above are not cusp forms, and it is not clear

whether nonzero cusp forms exist at all. In fact, Dalal [9] computed the dimen-

sion of the space of 𝐺2 modular forms of weight 𝑘 ≥ 3, using Arthur’s trace

formula. Especially, there exists a unique normalized nonzero cusp form of

weights 9 and 11 respectively, and it is natural to ask if one can compute Fourier

coefficients of the form.9 Using the exceptional theta correspondences, Pollack

[26, 27] proved that the coefficients of these forms are all integers and that all the

coefficients 𝑐𝐴( 𝑓 ) for cubic rings of the form 𝐴 ≃ Z × 𝐵 vanish. More generally,

he also proved that there exists a basis of 𝑆𝑘(𝐺2) whose Fourier coefficients lie

in Qcyc = Q(𝜇∞), for 𝑘 ≥ 610. Note that a similar algebraicity result is known

for holomorphic modular forms (if 𝑓 is a normalized Hecke eigenform, then its

coefficient lies in a certain number field 𝐾 = 𝐾 𝑓 ).

7 Further remarks

I end this note by introducing other works relevant to modular forms on 𝐺2,

which I don’t have enough space (and knowledge) to write down the details.

9The minimal weight ≥ 3 with a nonzero cusp form is 𝑘 = 6, but Pollack didn’t prove/con-

jecture that the normalized form in 𝑆6(𝐺2) has integer Fourier coefficients. At least, we know

algebraicity of the Fourier coefficients.

10During the seminar talk, I explained this as an “interesting” fact, especially because the

“coefficient field” is always abelian. Note that the coefficient fields of classical modular forms

can be non-abelian (examples can be found in LMFDB), but only when we increase the levels. If

we keep the level as 1, then the coefficient field is just Q (generated by Eisenstein series 𝐸4 and

𝐸6). Hence, we might even expect that the coefficient field of any 𝐺2-modular form of level 1 is

in a (abelian) number field, or even Q.
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• We have a theory of (standard) 𝐿-functions for 𝐺2 modular forms, especially

their Rankin–Selberg type integral representations, developed by Gurevich–

Segal [18] and Çiçek et. al. [7]. Especially, we have functional equations and

Dirichlet series representations.

• There’s an analogue of half-integral weight modular forms for 𝐺2 by Leslie

and Pollack [21], as automorphic forms on the double cover of 𝐺2. Especially,

they construct a modular form of weight
1

2
on 𝐺2, whose Fourier coefficients

measure the size of 2-torsions of the narrow class groups.

• There are four other exceptional groups 𝐹4, 𝐸6, 𝐸7, 𝐸8, and we can define

the notion of modular forms on these groups, too. In fact, there is a more

uniform way to treat all five exceptional groups at once, via Jordan algebra

and Freudenthal construction. This is well explained in an aribitrary paper

of Pollack, e.g. [24].

• Somehow, reductive groups of type 𝐷4 also behave like exceptional groups.

Weissman developed a similar theory of 𝐷4 modular forms (to be precise,

modular forms on Spin(4, 4) and Spin(8)), including Fourier coefficients, local

representation theory, and exceptional theta correspondences [33]. Interest-

ingly, the Fourier coefficients of the 𝐷4 modular forms are parameterized via

Bhargava’s cube [3].

• Gross and Lucianovic [23, 17] proved that there is a one-to-one correspon-

dence between the space of ternary quadratic forms and the quaternion algebras,
hence Fourier coefficients of genus 3 Siegel modular forms are parametrized

by quaternion algebras. One of the main example comes from Kim’s excep-

tional Eisenstein series on 𝐸7 [20], whose restriction on the Siegel upper half

plane gives a weight 4 Siegel modular form with Fourier coefficients counding

the number of embeddings of quaternion algebras into the Coxeter’s order in-

side the non-split octonion. The anisotropic/compact 𝐺𝑎
2

form a reductive dual

pair with GSp
6

in 𝐸8, and Volpato [31] proved that the lift of the constant

function on 𝐺𝑎
2

coincides with the Siegel modular form mentioned above.
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