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Abstract

This is an expository note on murmurations, which was initially discovered by He, Lee, Oliver, and

Pozdnyakov for elliptic curves. We focus on the cases where the mumuration density is computed (under

GRH), including the work of Zubrilina, Lee–Oliver–Pozdnyakov, and Sawin–Sutherland.

1 Introduction

Murmuration is a recently discovered phenomenon in number theory, referring to striking oscillatory

patterns that appear when averaging (normalized) Frobenius traces over families of 𝐿-functions, especially

as a function of the ratio between a prime 𝑝 and a parameter like conductor or height. The phenomenon was

first observed for elliptic curves by He, Lee, Oliver, and Pozdnyakov [13] who found that the average of 𝑎𝑝(𝐸)
over isogeny classes of elliptic curves with fixed rank and conductor in a given range exhibits a universal

oscillation pattern depending only on the rank. Sutherland [33] further clarified that the pattern depends on

𝑝/𝑁 (with 𝑁 the conductor), and that similar behavior appears when averaging with root number weights,

or over dyadic intervals.

Subsequent works have established and computed murmuration densities in other settings, such as

Dirichlet characters [18], modular forms [37, 22, 21, 3], Hecke characters of imaginary quadratic fields [36],

and Maass forms [4]. In some cases, the density function (distribution) can be written explicitly, while in

others (notably elliptic curves) it remains mysterious or highly intricate. Recent progress by Sawin and

Sutherland [25] has established a version of murmuration for elliptic curves ordered by height, with local

averaging. Most of the works uses trace formulas in their proofs.

A general framework for murmuration was proposed by Sarnak [23], relating the phenomenon to the

Katz–Sarnak philosophy of low-lying zeros and symmetry types of families of 𝐿-functions [16, 17]. The

existence and form of murmuration densities are closely tied to the conductor dimension of the family and

the need for local averaging.

This note surveys the main results and techniques in the study of murmuration, focusing on the cases

of elliptic curves, Dirichlet characters, modular forms, and related families. We also discuss the general

formulation and its connection to random matrix theory.

Not all existing works on murmuration are included in this note. For example, Cowan [7] studied the

murmuration using ratio conjecture, which also fit into the general framework of Sarnak [23].
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Figure 1: Murmuration of elliptic curves with conductor in [7500, 1000] and rank 𝑟 = 0 (blue) and 𝑟 = 1 (red) [13].

1.1 Plots

Most of the plots are reproduced by the author. Some of them have fewer data points or smaller conductor

ranges than the original ones due to computational limitations. Readers can find the code in the GitHub

repository: https://github.com/seewoo5/murmuration.

2 Murmuration of Elliptic Curves

2.1 He–Lee–Oliver–Pozdnyakov’s Murmuration

Murmuration of elliptic curves refers to the following average of Frobenius traces. Fix a nonnegative

integer 𝑟 and 𝑁1 < 𝑁2. Let ℰ𝑟[𝑁1 , 𝑁2] be the set of isogenous classes of elliptic curves 𝐸/Q with conductor

𝑁(𝐸) ∈ [𝑁1 , 𝑁2] and rank 𝑟. For a fixed prime 𝑝, we consider the following average:

E𝐸∈ℰ𝑟 [𝑁1 ,𝑁2][𝑎𝑝(𝐸)] =
∑
𝐸∈ℰ𝑟 [𝑁1 ,𝑁2] 𝑎𝑝(𝐸)∑
𝐸∈ℰ𝑟 [𝑁1 ,𝑁2] 1

(1)

as a function of 𝑝. What He, Lee, Oliver, and Pozdnyakov [13] observed is that this yields a surprising

oscillation pattern, as in Figure 1. In particular, it appears to have the same oscillation pattern for different

conductor ranges, where the pattern seems to depend only on the rank 𝑟.

2.2 Sutherland’s observation

When the paper is uploaded on arXiv, Sutherland was interested in the work and sent a letter to Rubinstein

and Sarnak [33] asking if murmuration can be explained by the known results, with further experiments.

In his letter, he observed that one really needs to view the murmuration density as a function of 𝑝/𝑁 rather

than 𝑝 for a fixed 𝑁 . He found that, for different dyadic intervals of the form [2𝑘 , 2𝑘+1), the murmuration

patterns look the same (and become clearer as 𝑘 increases), even if the averages consider completely different
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sets of elliptic curves (Figure 2). Also, instead of considering each rank separately, it seems better to consider

all ranks together, where we weight 𝑎𝑝(𝐸) by the root number 𝜖(𝐸) of 𝐸. One can separate into two groups

depending on the parity of the rank. So the major open question is to compute the density function, i.e., to

find a function 𝑀 : (0,∞) → R such that

E𝐸∈ℰ𝑟 [𝑁,2𝑁][𝑎𝑝(𝐸)𝜖(𝐸)] = 𝑀
( 𝑝
𝑁

)
+ error (2)

where the error term goes to zero as 𝑁 → ∞. More generally, one can fix 0 < 𝐶1 < 𝐶2 and consider the

interval [𝐶1𝑁, 𝐶2𝑁].
Sutherland also observed that the murmuration disappears when elliptic curves are ordered by other

measures, such as naive height, discriminant, or 𝑗-invariants, although further local averaging gives murmu-

ration for naive heights (see Section 5). This shows that the murmuration is a phenomenon that is sensitive

to the ordering of elliptic curves.

2.3 What is the role of Machine Learning?

Although there seems to be no machine learning involved in the previous discussions, I will make a brief

comment on the relation between machine learning and murmuration, as I found that existing literature is

often misleading in distinguishing the machine learning part from the murmuration part. I have read a few

articles on the internet which basically say that “AI found new mathematics,” which is false.

One of the main motivations of the papers [12, 13] is to study elliptic curves via machine learning.

In particular, they were interested in predicting the rank of elliptic curves (which is widely known to be

hard to compute in general) by means of machine learning, where the coefficients 𝑎𝑝(𝐸) of Hasse–Weil 𝐿-

functions are used as features. Surprisingly, they found that a simple logistic regression model can already

distinguish between rank 0 and 1 elliptic curves with high accuracy of > 90%. Along these lines, they

(more precisely, He, Lee, and Oliver) were curious about what was actually going on, and Pozdnyakov (who

was an undergraduate student of Lee at that time) figured out the murmuration pattern. This somehow

gives an explanation for the high accuracy of the model, since the murmuration patterns for rank 0 and 1

elliptic curves are noticeably different. But the correct way to say it is that the machine learning experiments

motivated them to study what the models were doing, which is essentially the work of humans, not the ML

models. You can find more of the story in the Quanta Magazine article [6].

2.4 Sato–Tate conjecture, Plancherel density conjecture and Murmuration

One should not confuse murmuration with the (vertical) Sato–Tate conjecture or Plancherel density conjec-

ture, which I will explain here. The original (i.e., horizontal) Sato–Tate conjecture is about the distribution of

𝑎𝑝(𝐸) for a fixed𝐸/Q and varying 𝑝. The Hasse–Weil bound says that |𝑎𝑝(𝐸)| ≤ 2

√
𝑝, and the conjecture predicts

that for a non-CM elliptic curve 𝐸, the distribution of 𝑎𝑝(𝐸) is semicircular with radius 2

√
𝑝, i.e., the density

function is
1

2𝜋

√
4 − 𝑥2

d𝑥 for the normalized traces 𝑎𝑝(𝐸)/
√
𝑝. Equivalently, if we write 𝑎𝑝(𝐸) = 2

√
𝑝 cos𝜃𝑝

for 𝜃𝑝 ∈ [0,𝜋], then 𝜃𝑝 follows the distribution
2

𝜋 sin
2 𝜃d𝜃. The distributions for CM elliptic curves are

different, and we also expect that the Frobenius traces for abelian varieties of higher dimension will follow

certain distributions, which are conjecturally the pushforward of the Haar measure of a certain compact Lie

group, called the Sato–Tate group. See [35] for more about the Sato–Tate conjecture and recent progress on it.
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Figure 2: Murmuration of non-CM elliptic curves with conductor in [2𝑘 , 2𝑘+1) and primes 𝑝 < 2
𝑘 for 𝑘 = 12, . . . , 16. Blue (resp. red) curves

correspond to 𝜖(𝐸) = +1 (resp. −1) elliptic curves.
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The vertical Sato–Tate conjecture fixes 𝑝 and varies 𝐸 over F𝑝 instead, where there are only finitely many

isomorphism classes of 𝐸 over F𝑝 . Birch [2] proved that the distribution converges to the above semicircular

distribution as 𝑝 → ∞. This is different from the murmuration for two reasons: vertical Sato–Tate considers

the elliptic curves over F𝑝 , and there’s no conductor involved in vertical Sato–Tate.

Probably, a closer situation would be fixing a prime 𝑝 and varying 𝐸 over Qwith conductors in a certain

range. Although we couldn’t find a work in this direction, the most relevant case would be the corresponding

case of modular forms by Serre [27]. In particular, he proved that: if a sequence of pairs of weight and level

(𝑘𝑖 , 𝑁𝑖) satisfies 2 | 𝑘𝑖 , 𝑘𝑖 + 𝑁𝑖 → ∞, and 𝑝 ∤ 𝑁𝑖 , then the distribution of the normalized Hecke eigenvalues

𝑎𝑝/𝑝
𝑘−1

2 ∈ [−2, 2] converges to the Plancherel measure

𝜇𝑝 =
𝑝 + 1

2𝜋

√
4 − 𝑥2

(𝑝 1

2 + 𝑝− 1

2 )2 − 𝑥2

d𝑥

which is usually dubbed as a Plancherel density theorem (See also [29] and [30] for generalizations). Hence

one can fix weight 𝑘 = 2 and vary the level 𝑁 → ∞ with 𝑝 ∤ 𝑁 . However, this includes many more modular

forms than the ones corresponding to elliptic curves. Also, we want both 𝑝 and 𝑁 to grow at similar rates

in murmuration, so Serre’s result does not directly apply to our situation.

3 Murmuration of Dirichlet Series

Although the original murmuration density for elliptic curves is still unknown, there are a few works where

murmuration exists and is even computed (under GRH). Historically, the first such example is the work of

Zubrilina on modular forms [37], but we will start with the simplest case of Dirichlet characters. Lee, Oliver,

and Pozdnyakov computed the murmuration density for Dirichlet characters [18]1. For complex characters,

the corresponding murmuration densities are given by the following theorem.

Theorem 3.1 (Lee–Oliver–Pozdnyakov [18, Theorem 1.1]). Let 𝒟+(𝑁) (resp. 𝒟−(𝑁)) denote the set of

primitive even (resp. odd) Dirichlet characters modulo 𝑁 . For 𝑥 ∈ R>0, let ⌈𝑥⌉𝔭 be the smallest prime ≥ 𝑥.

For 𝑐 > 1, 𝛿 > 0, and 𝑦 > 0, define

𝑃±(𝑦, 𝑋, 𝑐) :=
log𝑋

𝑋

∑
𝑁∈[𝑋,𝑐𝑋]
𝑁 prime

∑
𝜒∈𝒟±(𝑁)

𝜒(⌈𝑦𝑋⌉𝔭)
𝜏(𝜒) , (3)

𝑃±(𝑦, 𝑋, 𝛿) :=
log𝑋

𝑋𝛾

∑
𝑁∈[𝑋,𝑋+𝑋𝛾]
𝑁 prime

∑
𝜒∈𝒟±(𝑁)

𝜒(⌈𝑦𝑋⌉𝔭)
𝜏(𝜒) . (4)

Then

lim

𝑋→∞
𝑃±(𝑦, 𝑋, 𝑐) =


∫ 𝑐

1

cos

(
2𝜋𝑦
𝑥

)
d𝑥 if +,

−𝑖
∫ 𝑐

1

sin

(
2𝜋𝑦
𝑥

)
d𝑥 if −,

(5)

and assuming RH, if
1

2
< 𝛾 < 1, we have

lim

𝑋→∞
𝑃±(𝑦, 𝑋, 𝛾) =

{
cos(2𝜋𝑦) if +,
−𝑖 sin(2𝜋𝑦) if − .

(6)

1These can be thought of as automorphic forms on GL1 over Q.
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See Figure 3 for the plot of the above murmuration densities. As you can see, there are two versions of

murmurations: the long interval [𝑋, 𝑐𝑋] and the short interval [𝑋, 𝑋 + 𝑋𝛿]. Note that one needs to assume

RH to get the short interval version, to guarantee the existence of primes in short intervals. The summand

𝜒(𝑝)/𝜏(𝜒) is the 𝑝-th Fourier coefficient of 𝜒 when expanded in terms of additive characters: we have [14,

eq. (3.12)]

𝜒(𝑎) = 1

𝜏(𝜒)
∑

𝑏 (mod 𝑁)
𝜒(𝑏) exp

(
2𝜋𝑖𝑎𝑏
𝑁

)
when 𝜏(𝜒) ≠ 0, which justifies the normalization (Note that 𝒟±(𝑁) is invariant under complex conjugation).

Also, the above averages only consider prime moduli, though the authors also studied the case of composite

moduli in [18, Section 6.1].

The proof of Theorem 3.1 is much simpler than the case of modular forms (Section 4). By orthogonality

of characters, we have

exp

(
2𝜋𝑖𝑎
𝑁

)
= cos

(
2𝜋𝑎
𝑁

)
+ 𝑖 sin

(
2𝜋𝑎
𝑁

)
=

1

𝜙(𝑁)
∑

𝜒 (mod 𝑁)
𝜒(𝑎)𝜏(𝜒)

and taking 𝑎 = 𝑝 and −𝑝 for a prime 𝑝 ∤ 𝑁 gives (note that 𝜏(𝜒0) = −1)

cos

(
2𝜋𝑝

𝑁

)
= − 1

𝜙(𝑁) +
1

𝜙(𝑁)
∑

𝜒 (mod 𝑁)
𝜒≠𝜒0 , 𝜒(−1)=1

𝜏(𝜒)𝜒(𝑝),

sin

(
2𝜋𝑝

𝑁

)
= − 𝑖

𝜙(𝑁)
∑

𝜒 (mod 𝑁)
𝜒(−1)=−1

𝜏(𝜒)𝜒(𝑝).

Now, use 𝜏(𝜒)𝜏(𝜒) = 𝑁𝜒(−1) for 𝜒 ∈ 𝒟±(𝑁) to get [18, Lemma 2.6]: for two distinct primes 𝑝 and 𝑁 ,∑
𝜒∈𝒟+(𝑁)

𝜒(𝑝)
𝜏(𝜒) =

(
𝑁 − 1

𝑁

)
cos

(
2𝜋𝑝

𝑁

)
+ 1

𝑁
,

∑
𝜒∈𝒟−(𝑁)

𝜒(𝑝)
𝜏(𝜒) = −𝑖

(
𝑁 − 1

𝑁

)
sin

(
2𝜋𝑝

𝑁

)
.

Combined with the prime number theorem (which gives equidistribution results of primes in [𝑋, 𝑐𝑋]
normalized by 𝑋), we get (5). For short intervals, RH and the prime number theorem imply

lim

𝑋→∞

log𝑋

𝑋𝛾 · #{𝑝 ∈ [𝑦𝑋, 𝑦𝑋 + 𝑋𝛾]} = 1,

for
1

2
< 𝛾 < 1, and this implies [18, Lemma 2.9]

lim

𝑋→∞

log𝑋

𝑋𝛾

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

𝑓
( 𝑝
𝑋

)
= 𝑓 (𝑦) (7)

which proves (6). Note that Baker, Harman, and Pintz proved an unconditional result for the existence of a

prime in a slightly longer short interval [𝑋, 𝑋 +𝑋0.525], which means that Theorem 3.1 holds with 𝛾 ≥ 0.525

unconditionally [1].
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They also proved similar results for real Dirichlet characters, but the proof is more complicated. Let G

be the set of odd square-free integers and let 𝜒𝑑 =
(
𝑑
·

)
. For a compactly supported smooth function Φ ≥ 0

on R, define

𝑀Φ(𝑦, 𝑋, 𝛾) =
log𝑋

𝑋1+𝛾

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

∑
𝑑∈G

Φ

(
𝑑

𝑋

)
𝜒8𝑑(𝑝)

√
𝑝. (8)

Theorem 3.2 (Lee–Oliver–Pozdnyakov [18, Theorem 1.2]). Fix 𝑦 > 0 and assume
3

4
< 𝛾 < 1. Assuming

GRH, we have

𝑀Φ(𝑦) := lim

𝑋→∞
𝑀Φ(𝑦, 𝑋, 𝛾) =

1

2

∑
𝑎≥1

𝑎 odd

𝜇(𝑎)
𝑎2

∑
𝑚≥1

(−1)𝑚Φ̃
(
𝑚2

2𝑎2𝑦

)
, (9)

where

Φ̃(𝜉) =
∫ ∞

−∞
(cos(2𝜋𝜉𝑥) + sin(2𝜋𝜉𝑥))Φ(𝑥)d𝑥. (10)

(The limit does not depend on the choice of 𝛾.)

See Figure 4 for the corresponding plots when Φ+ (resp. Φ−) is supported on (1, 2) (resp. (−2,−1)). For

the proof, we can write 𝑀Φ(𝑦, 𝑋, 𝛾) as

𝑀Φ(𝑦, 𝑋, 𝛾) =
log𝑋

𝑋1+𝛾

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

∑
𝑑∈Z
𝑑 odd

𝜇2(𝑑)Φ
(
𝑑

𝑋

)
𝜒8𝑑(𝑝)

√
𝑝

=
log𝑋

𝑋1+𝛾

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

∑
𝑑∈Z
𝑑 odd

©­­­«
∑
𝑎2 |𝑑
0<𝑎

𝜇(𝑎)
ª®®®¬Φ

(
𝑑

𝑋

)
𝜒8𝑑(𝑝)

√
𝑝

= 𝑀Φ,𝐴(𝑦, 𝑋, 𝛾) + 𝑅Φ,𝐴(𝑦, 𝑋, 𝛾),

where 𝛽 := sup𝑥∈R{|𝑥 | : Φ(𝑥) > 0}, 0 < 𝐴 ≤
√
𝛽𝑋, and

𝑀Φ,𝐴(𝑦, 𝑋, 𝛾) :=
log𝑋

𝑋1+𝛾

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

∑
𝑑∈Z
𝑑 odd

©­­­«
∑
𝑎2 |𝑑

0<𝑎≤𝐴

𝜇(𝑎)
ª®®®¬Φ

(
𝑑

𝑋

)
𝜒8𝑑(𝑝)

√
𝑝, (11)

𝑅Φ,𝐴(𝑦, 𝑋, 𝛾) :=
log𝑋

𝑋1+𝛾

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

∑
𝑑∈Z
𝑑 odd

©­­­«
∑
𝑎2 |𝑑
𝐴<𝑎

𝜇(𝑎)
ª®®®¬Φ

(
𝑑

𝑋

)
𝜒8𝑑(𝑝)

√
𝑝. (12)

We will show that 𝑅Φ,𝐴(𝑦, 𝑋, 𝛾) → 0 and 𝑀Φ,𝐴(𝑦, 𝑋, 𝛾) converges to the right-hand side of (9). Note that

𝐴 will not be a fixed constant, but rather grows together with 𝑋: in fact, the proof uses 0 < 𝜖 < (𝛾 − 3

4
)/5

and 𝐴 = 𝑋1+5𝜖−𝛾
. To estimate the sum of the characters, one uses the Pólya–Vinogradov inequality: for a

non-principal character 𝜒 (mod 𝑞), ����� ∑
𝑀<𝑛≤𝑀+𝑁

𝜒(𝑛)
����� ≪ 𝑞

1

2 log 𝑞 (13)
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Using this, by assuming GRH, one can show that the summation over primes in the short interval [𝑦𝑋, 𝑦𝑋+
𝑋𝛾] is bounded by (see [11, eq. (5.1)]) ��������

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

𝜒𝑑(𝑝)

�������� ≪ (𝑦𝑋) 1

2
+𝜖

(14)

for non-principal 𝜒𝑑 and
1

2
< 𝛾 < 1. Combined with Abel’s summation formula, (14) shows that the

remainder term 𝑅Φ,𝐴(𝑦, 𝑋, 𝛾) vanishes as 𝑋 → ∞, where 𝛾 > 3

4
is used in the computation. For the main

term 𝑀Φ,𝐴(𝑦, 𝑋, 𝛾), the Poisson summation formula implies [18, Lemma 2.11]

1

𝑋

∑
𝑑∈Z
𝑑 odd

©­­­«
∑
𝑎2 | |𝑑 |
𝑎≤𝐴

𝜇(𝑎)
ª®®®¬Φ

(
𝑑

𝑋

) (
𝑑

𝑝

)
√
𝑝 =

1

2

(
2

𝑝

) ∑
0<𝑎≤𝐴
(𝑎,2𝑝)=1

𝜇(𝑎)
𝑎2

∑
𝑘∈Z

(−1)𝑘
(
𝑘

𝑝

)
Φ̃

(
𝑘𝑋

2𝑎2𝑝

)
,

and applying it to (11) gives

𝑀Φ,𝐴(𝑦, 𝑋, 𝛾) =
log𝑋

𝑋𝛾

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

1

2

∑
0<𝑎≤𝐴
(𝑎,2𝑝)=1

𝜇(𝑎)
𝑎2

∑
0≠𝑘∈Z

(−1)𝑘
(
𝑘

𝑝

)
Φ̃

(
𝑘𝑋

2𝑎2𝑝

)

for sufficiently large 𝑋. Since 0 < 𝑎 ≤ 𝐴 ≪ 𝑋
1

2 ≪ 𝑝, we have (𝑎, 2𝑝) = 1 if and only if (𝑎, 2) = 1, and

switching the order of summation gives

𝑀Φ,𝐴(𝑦, 𝑋, 𝛾) =
1

2

∑
(𝑎,2)=1

0<𝑎≤𝐴

𝜇(𝑎)
𝑎2

∑
0≠𝑘∈Z

(−1)𝑘
log𝑋

𝑋𝛾

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

(
𝑘

𝑝

)
Φ̃

(
𝑘𝑋

2𝑎2𝑝

)
.

Now, using the Polya–Vinogradov inequality (14) again, one can show that the summation over non-square

𝑘 exhibits cancellation and only the sum over square 𝑘 contributes to the main term (𝛾 > 3

4
is used again):

lim

𝑋→∞
𝑀Φ,𝐴(𝑦, 𝑋, 𝛾) = lim

𝑋→∞

log𝑋

𝑋𝛾

∑
𝑝∈[𝑦𝑋,𝑦𝑋+𝑋𝛾]

𝑝 prime

1

2

∑
(𝑎,2)=1

0<𝑎≤𝐴

𝜇(𝑎)
𝑎2

∑
𝑚≥1

(𝑚,𝑝)=1

(−1)𝑚Φ̃
(
𝑚2𝑋

2𝑎2𝑝

)
.

Finally, one can use the Poisson summation formula to show that the two inner sums on the right-hand side

converge to a smooth function in 𝑦 = 𝑝/𝑋 as 𝑋 → ∞ (hence 𝐴 → ∞), and applying (7) gives the desired

result. See [18, Section 6.2] for an analogous result for 𝜒𝑑.

4 Murmuration of Modular Forms

The first murmuration density that was ever computed is for modular forms by Zubrilina [37]. For each fixed

weight 𝑘, she computed the murmuration density of weight 𝑘 cusp newforms of level Γ0(𝑁), as 𝑁 → ∞. In

this section, we briefly sketch the main ideas and results of her work.
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Figure 3: Murmuration of Dirichlet characters. The top figure presents 𝑃±(𝑦, 210 , 2) for 𝑦 ∈ [0, 10] with + in blue and (the imaginary part of)
− in red. The bottom figure presents 𝑃±(𝑦, 2002, 0.51) for 𝑦 ∈ [0, 2] with + in blue and (the imaginary part of) − in red. The discontinuity of
𝑃+(𝑦, 2002, 0.51) at 𝑦 = 1 corresponds to the term 𝑝 = 𝑁 in (4).
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Figure 4: Murmuration of Kronecker characters 𝜒
8𝑑 . The top figure presents 𝑀Φ± (𝑦, 216 , 2

3
) for 𝑦 ∈ [0, 2] with Φ+(𝑥) = 1(1,2)(𝑥) exp(−1/(1 −

4(𝑥 − 3

2
)2)) and Φ−(𝑥) = 1(−2,−1)(𝑥) exp(−1/(1 − 4(𝑥 + 3

2
)2)). The bottom figure presents 𝑀Φ± (𝑦, 216 , 2

3
) for 𝑦 ∈ [0, 2] with Φ+(𝑥) = 1(1,2)(𝑥)

and Φ−(𝑥) = 1(−2,−1)(𝑥). Note that we use 𝛾 = 2

3
, even if the above proof only works when 𝛾 > 3

4
.
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4.1 Statement

Before we state the result, we first define some notation. For each 𝑘 and 𝑁 ≥ 1, let 𝐻new(𝑁, 𝑘) be the set

of normalized Hecke cusp forms of weight 𝑘 and level Γ0(𝑁). For each 𝑓 ∈ 𝐻new(𝑁, 𝑘), let 𝜖( 𝑓 ) ∈ {±1} be

the root number of 𝑓 , and 𝑎 𝑓 (𝑝) be the 𝑝-th Fourier coefficient of 𝑓 and 𝜆 𝑓 (𝑝) := 𝑎 𝑓 (𝑝)/𝑝
𝑘−1

2 be its analytic

normalization. For 𝑛 ∈ Z≥0, the 𝑛-th Chebyshev polynomial of the second kind is defined as

𝑈𝑛(cos𝜃) = sin((𝑛 + 1)𝜃)
sin𝜃

.

For each 𝑟 ∈ Z≥1, define

𝜈(𝑟) :=
∏
𝑝 |𝑟

(
1 + 𝑝2

𝑝4 − 2𝑝2 − 𝑝 + 1

)
Lastly, we define the constants 𝛼, 𝛽, 𝛾 as

𝛼 := 2𝜋
∏
𝑝

𝑝4 − 2𝑝2 − 𝑝 + 1

𝑝4 − 2𝑝2 + 𝑝
, 𝛽 := 2𝜋

∏
𝑝

𝑝3 + 𝑝2 − 1

𝑝(𝑝2 + 𝑝 − 1) , 𝛾 := 12

∏
𝑝

𝑝(𝑝 + 1)
𝑝2 + 𝑝 − 1

.

Theorem 4.1 (Zubrilina [37, Theorem 1]). Let 𝑋,𝑌, 𝑃 be parameters going infinite with 𝑋,𝑌 > 0 and 𝑃

prime; assume further that 𝑌 = (1 + 𝑜(1))𝑋1−𝛿2
and 𝑃 ≪ 𝑋1+𝛿1

for some 𝛿1 , 𝛿2 with 0 < 𝛿1 < 1

11
, 2𝛿1 < 𝛿2 <

1

13
(4 − 18𝛿1). Let 𝑦 = 𝑃/𝑋. Then

E 𝑁∈[𝑋,𝑋+𝑌]
𝑁 squarefree

𝑓 ∈𝐻new(𝑁,𝑘)

[
√
𝑃𝜆 𝑓 (𝑃)𝜖( 𝑓 )] =

∑□
𝑁∈[𝑋,𝑋+𝑌]

∑
𝑓 ∈𝐻new(𝑁,𝑘)

√
𝑃𝜆 𝑓 (𝑃)𝜀( 𝑓 )∑□

𝑁∈[𝑋,𝑋+𝑌]
∑
𝑓 ∈𝐻new(𝑁,𝑘) 1

= ℳ𝑘(𝑦) + 𝑂𝜀

(
𝑋−𝛿′+𝜀 + 1

𝑃

)
(15)

where

ℳ𝑘(𝑦) =
𝛼(−1)𝑘/2−1

𝑘 − 1

∑
1≤𝑟≤2

√
𝑦

𝜈(𝑟)
√

4𝑦 − 𝑟2𝑈𝑘−2

(
𝑟

2

√
𝑦

)
+ 𝛽

𝑘 − 1

√
𝑦 − 𝛾𝛿𝑘=2𝑦. (16)

Here 𝛿′ > 0 is a constant explicitly expressible through 𝛿1 , 𝛿2. The notation

∑□
means the sum is over

square-free integers.

Figure 5 shows the graphs ofℳ𝑘(𝑦) for 𝑘 = 2, 8, 24 (note that𝑈0(𝑥) = 1 andℳ2(𝑦) is a linear combination

of the functions of the form

√
4𝑦 − 𝑟2

). They are continuous but not differentiable at 𝑦 = 𝑟2

4
for 𝑟 ∈ Z>0,

which are the points where the summation index 𝑟 changes.

4.2 Skoruppa–Zagier trace formula

To prove Theorem 4.1, one needs to understand how to estimate the numerator on the LHS. Recall that 𝑎 𝑓 (𝑃)
is the 𝑃-th Fourier coefficient of 𝑓 , which is also the eigenvalue of the Hecke operator 𝑇𝑃 acting on 𝑓 . Also,

(−1)𝑘/2𝜀( 𝑓 ) is equal to the eigenvalue of the Atkin–Lehner involution 𝑊𝑁 = 𝑇𝑁 acting on 𝑓 . Thus, the sum

appearing in the numerator on the LHS of (15) can be interpreted as the trace of the operator (−1)𝑘/2𝑇𝑃 ◦𝑊𝑁

acting on the space of cusp forms of weight 𝑘 and level 𝑁 (multiplied by 𝑃1−𝑘/2
). Eichler [8] studied such

sums of traces and proved that they can be expressed in terms of (Hurwitz) class numbers, which was

generalized by Selberg [26]. To account for the root number 𝜀( 𝑓 ), i.e., the eigenvalue of 𝑊𝑁 , we use the

following version of the Eichler–Selberg trace formula by Skoruppa and Zagier [31].
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Figure 5: Murmuration density ℳ𝑘 (𝑦) of modular forms for 𝑘 = 2, 8, 24.

Theorem 4.2 (Skoruppa–Zagier [31]). For square-free 𝑁 and prime 𝑃 ∤ 𝑁 ,∑
𝑓 ∈𝐻new(𝑁,𝑘)

√
𝑃𝜆 𝑓 (𝑃)𝜀( 𝑓 ) =

𝐻1(−4𝑃𝑁)
2

+ (−1)𝑘/2−1𝑈𝑘−2

(
𝑟
√
𝑁

2

√
𝑃

) ∑
0<𝑟≤2

√
𝑃/𝑁

𝐻1(𝑟2𝑁2 − 4𝑃𝑁) − 𝛿𝑘=2(𝑃 + 1)

Here 𝐻1(−𝑑) (𝑑 > 0) is the Hurwitz class number, the number of equivalence classes of positive definite

binary quadratic forms of discriminant −𝑑 weighted by the number of automorphisms, i.e. with forms

correspond to 𝑥2 + 𝑦2
or 𝑥2 + 𝑥𝑦 + 𝑦2

counted with multiplicity 1/2 and 1/3 respectively.

If we denote the spaces of eigenforms with root number +1 and −1 by 𝐻new

+ (𝑁, 𝑘) and 𝐻new

− (𝑁, 𝑘)
respectively, then the above theorem can be interpreted as the difference of the traces of 𝑇𝑃 acting on

𝐻new

+ (𝑁, 𝑘) and𝐻new

− (𝑁, 𝑘), while the Eichler–Selberg trace formula gives the sum of the two traces. Theorem

4.2 is proven by using the theory of Jacobi forms, which we will not discuss here. Hurwitz class number

can be expressed as a sum of usual class numbers as

𝐻1(−𝑑) =
∑
𝑓 2 |𝑑

ℎ(−𝑑/ 𝑓 2) + 𝑂(1)

where the “error term” 𝑂(1) disappears if 𝑑 ≠ 3 ·□ or 4 ·□. Using this, we can rewrite the Skoruppa–Zagier

trace formula as∑
𝑓 ∈𝐻new(𝑘,𝑁)

√
𝑃𝜆 𝑓 (𝑃)𝜀( 𝑓 )

=
ℎ(−4𝑃𝑁)

2

+ ℎ(−𝑃𝑁)
2

− 𝛿𝑘=2𝑃 + 𝑂(1) + (−1)𝑘/2−1𝑈𝑘−2

(
𝑟
√
𝑁

2

√
𝑃

) ∑
1≤𝑟≤2

√
𝑃/𝑁

∑
𝑑2 |𝑟2𝑁−4𝑃

ℎ

(
𝑁(𝑟2𝑁 − 4𝑃)

𝑑2

)
From this, our new goal is to estimate the average of class numbers over short intervals, i.e. when 𝑁 ∈
[𝑋, 𝑋 + 𝑌] with 𝑌 = 𝑜(𝑋). The main idea is to use class number formula to write class numbers as special

𝐿-values at 𝑠 = 1, e.g.

ℎ(−𝑑) =
√
𝑑

𝜋
𝐿(1, 𝜒𝑑)
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when 𝑑 > 4 and −𝑑 . 2, 3 (mod 4), and 𝜒𝑑 =

(
𝑑
·

)
is the Kronecker symbol. Then the sum (average) of

the corresponding 𝐿-values can be estimated via truncation and Polya–Vinogradov inequality (13). For

example, we have an estimate

𝐿(1, 𝜒𝑑) =
∑
𝑛≥1

𝜒𝑑(𝑛)
𝑛

=
∑

1≤𝑛≤𝑇

𝜒𝑑(𝑛)
𝑛

+ 𝑂
(√
𝑑 log 𝑑

𝑇

)
.

With some hard analysis, one gets the following estimations on the sum of ℎ(−𝑃𝑁) and ℎ(−4𝑃𝑁).

Proposition 4.3 (Zubrilina [37, Proposition 3.1]). Let 𝑃 be an odd prime and let [𝑋, 𝑋 + 𝑌] be an interval

with 𝑌 = 𝑜(𝑋). Then as 𝑋 → ∞,

𝜁(2)𝜋
𝑋𝑌

∑
□

𝑁∈[𝑋,𝑋+𝑌]
𝑃∤𝑁

(
ℎ(−𝑃𝑁)

2

+ ℎ(−4𝑃𝑁)
2

)
= 𝐴

√
𝑦 + 𝑂𝜀

(
1

𝑃3/2𝑋1/2

+ 𝑃7/12

𝑌5/6𝑋5/12

+ 𝑌𝑃1/2

𝑋3/2

)
(𝑋𝑌𝑃)𝜀

where

𝐴 =
∏
𝑝

(
1 + 𝑝

(𝑝 + 1)2(𝑝 − 1)

)
.

The summation of 𝐻1(𝑟2𝑁2 − 4𝑃𝑁) terms can be bounded in a similar way, although the computation is

much more complicated.

Proposition 4.4 (Zubrilina [37, Proposition 3.2]). Let 𝑃 be an odd prime, 𝑟 ∈ N, and 𝑋 > 𝑌 > 0 be such that

𝑟2(𝑋 + 𝑌) < 4𝑃 for each 𝑟 > 2

√
𝑃/𝑋. Let 𝑦 = 𝑃/𝑋. Then

𝜁(2)𝜋
𝑋𝑌

∑
𝑟≤2

√
𝑃/𝑋

∑
□

𝑁∈[𝑋,𝑋+𝑌]
𝑃∤𝑁

𝐻1

(
𝑟2𝑁2 − 4𝑃𝑁

)
=

∑
𝑟≤2

√
𝑃/𝑋

𝐵𝜈(𝑟)
√

4𝑦 − 𝑟2 + 𝑂
(

𝑃11/10

𝑌2/5𝑋9/10

+ 𝑌𝑃

𝑋2

+ 𝑃𝑌1/2

𝑋3/2

+ 𝑃

𝑋1/2𝑌13/18

+ 𝑃

𝑋𝑌1/9

)
(𝑋𝑌𝑃)𝜀

where

𝐵 =
∏
𝑝

𝑝4 − 2𝑝2 − 𝑝 + 1

(𝑝2 − 1)2 .

4.3 Geometric intervals

Theorem 4.1 considers the average over “short intervals” [𝑋, 𝑋 + 𝑌] with 𝑌 = 𝑜(𝑋). By integrating it in a

suitable sense, one can also get the average over “geometric intervals” [𝑋, 𝑐𝑋] for some constant 𝑐 > 1.

Theorem 4.5 ([37, Theorem 2]). Let 𝑃 ≪ 𝑋6/5
, 𝑐 > 1 be a constant, and 𝑦 = 𝑃/𝑋. As 𝑋 → ∞,

E 𝑁∈[𝑋,𝑐𝑋]
𝑁 squarefree

𝑓 ∈𝐻new(𝑁,𝑘)

[
√
𝑃𝜆 𝑓 (𝑃)𝜖( 𝑓 )] =

2

𝑐2 − 1

∫ 𝑐

1

𝑢ℳ𝑘

( 𝑦
𝑢

)
d𝑢 + 𝑜𝑦(1)

where ℳ𝑘(𝑦) is as in Theorem 4.1. In particular, for 𝑘 = 𝑐 = 2, the dyadic average∑□
𝑁∈[𝑋,2𝑋]

∑
𝑓 ∈𝐻new(𝑁,2) 𝑎 𝑓 (𝑃)𝜖( 𝑓 )∑□

𝑁∈[𝑋,2𝑋]
∑
𝑓 ∈𝐻new(𝑁,2) 1
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converges to 

𝑎
√
𝑦 − 𝑏𝑦 0 ≤ 𝑦 ≤ 1

4

𝑎
√
𝑦 − 𝑏𝑦 + 𝑐𝜋𝑦2 − 𝑐(1 − 2𝑦)

√
𝑦 − 1

4
− 2𝑐𝑦2

arcsin

(
1

2𝑦 − 1

)
1

4
≤ 𝑦 ≤ 1

2

𝑎
√
𝑦 − 𝑏𝑦 + 2𝑐𝑦2

(
arcsin

(
1

𝑦 − 1

)
− arcsin

(
1

2𝑦 − 1

))
−𝑐(1 − 2𝑦)

√
𝑦 − 1

4
+ 2𝑐(1 − 𝑦)

√
2𝑦 − 1

1

2
≤ 𝑦 ≤ 1

where 𝑎 = 4

9
(23/2 − 1)𝛽, 𝑏 = 2

3
𝛾, 𝑐 = 2

3
𝛼. for explicit constants 𝑎, 𝑏, 𝑐.

Proof. The main idea of the proof is to divide the interval [𝑋, 𝑐𝑋] into short intervals [𝑋𝑔 , 𝑋𝑔+1] for 𝑋𝑔 =

𝑋 + (𝑔 − 1)𝑌 where 𝑌 ∼ 𝑋1−𝛿2
. Then use Theorem 4.1 to approximate the sum over short intervals as an

integral of 𝑢ℳ𝑘(𝑦/𝑢). The case of 𝑘 = 𝑐 = 2 can be done by elementary computations. □

The murmuration density function ℳ𝑘(𝑦) has many interesting properties. Especially, their properties

can be related to Katz and Sarnak’s 1-level density conjecture [16]; see Section 7 for more details.

4.4 Doesn’t Zubrilina’s result prove murmuration for elliptic curves, because of the modularity?

No! The reason is that elliptic curves over Q correspond to modular forms of weight 2 with coefficient field
(Hecke field) Q (recall that 𝑎𝑝(𝐸) = 𝑝 + 1 − #𝐸(F𝑝) are integers). The family (see also Section 7) that Zubrilina

considered is much larger than the family of elliptic curves in [13], and it seems hard to isolate such a family

from the whole family of Hecke eigenforms (of weight 2). It is conjectured that the conductor dimension (See

7 for the definition) of elliptic curves is
5

6
[28], while that of the weight 2 modular forms is 2.

4.5 Without root number

In [21, 22], Martin considered murmurations without the root number weight but with

√
𝑁 scaling, i.e. the

average of the form

E 𝑁∈[𝑋,𝑐𝑋]
𝑁 squarefree

𝑓 ∈𝐻new(𝑁,𝑘)

[
√
𝑁𝑃𝜆 𝑓 (𝑃)] =

∑□
𝑁∈[𝑋,𝑐𝑋]

∑
𝑓 ∈𝐻new(𝑁,𝑘)

√
𝑁𝑃𝜆 𝑓 (𝑃)∑□

𝑁∈[𝑋,𝑐𝑋]
∑
𝑓 ∈𝐻new(𝑁,𝑘) 1

(17)

or more generally,

E 𝑁∈[𝑋,𝑐𝑋]
𝑓 ∈𝐻new(𝑁,𝑘)

[
𝑤𝑄( 𝑓 )

√
𝑁𝑃

𝑄
𝜆 𝑓 (𝑃)

]
(18)

for a sequence of divisors 𝑄 | 𝑁 for each 𝑁 appearing in the average, where 𝑤𝑄( 𝑓 ) is the eigenvalue

of the Atkin–Lehner involution 𝑊𝑄 acting on 𝑓 . 𝑄 = 𝑁 corresponds to the Zubrilina’s case (Theorem

4.5), while 𝑄 = 1 reduces to (17). He conjectured that we do have murmurations in such general cases

for “arithmetically compatible sequences of (𝑁, 𝑄)” [21, Conjecture 1.8], and computed the murmuration

density for small 𝑦 = 𝑃/𝑋 (See also Figure 6). The analogous trace formula for 𝑇𝑃 ◦𝑊𝑄 is given in [21,

Proposition 5.5], although the analysis would be much harder since the number of class number terms

grows with 𝑃 (it is bounded in (17)).
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Figure 6: Murmuration of modular forms without root number weight for 𝑘 = 2, 𝑁 ∈ [1000, 2000] and 𝑃 < 4000.

5 Murmuration of Elliptic Curves, Revisited

Recently, Will Sawin and Andrew Sutherland announced a murmuration theorem for elliptic curves [25],

which is slightly different from the formulation in [13]. Especially, they proved a version of the murmuration

theorem ordered by height:

Theorem 5.1 (Sawin–Sutherland [25]). Let

E(𝑋) := {𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 : 𝑎, 𝑏 ∈ Z, 𝑝4 | 𝑎 ⇒ 𝑝6 ∤ 𝑏,max{4|𝑎 |3 , 27𝑏2} ≤ 𝑋}

be the set of isogenous classes of elliptic curves over Q ordered by naive height. For any smooth function

𝑊 : R>0 → Rwith compact support, the limit

lim

𝑃→∞
lim

𝑋→∞
E𝐸∈E(𝑋)


∏

𝑝≤𝑃(1 − 𝑝−1)−1

𝑁(𝐸)
∑
𝑛≥1

𝑝∤𝑛 ∀𝑝≤𝑃

𝑊

(
𝑛

𝑁(𝐸)

)
𝑎𝑛(𝐸)𝜖(𝐸)

 (19)

exists and is equal to∫ ∞

0

𝑊(𝑢)
√
𝑢
©­­«2𝜋

∑
□

𝑞≥1

∑
𝑚≥1

𝜇(gcd(𝑚, 𝑞))

𝑞𝑚𝜙
(

𝑞

gcd(𝑚,𝑞)

) 𝐽1 (
4𝜋

√
𝑢𝑚

𝑞

) ∏
𝑝 |𝑞

ℓ̂𝑝,2𝑣𝑝 (𝑚)
∏

𝑝 |𝑚,𝑝∤𝑞
ℓ𝑝,2𝑣𝑝 (𝑚)

ª®®¬d𝑢 (20)

where ℓ𝑝,𝜈 and ℓ̂𝑝,𝜈 are certain local factors that can be written in terms of traces of the Hecke operator 𝑇𝑝

(see [25, Lemma 3, 4]).

They also conjectured the following:

Conjecture 5.2 ([25, Conjecture 1]). For any 0 < 𝐶1 < 𝐶2, we have

lim

𝑋→∞
E𝐸∈E(𝑋)


log

(
𝑁(𝐸)𝐶1+𝐶2

2

)
𝑁(𝐸)

∑
𝑝∈(𝐶1𝑁(𝐸),𝐶2𝑁(𝐸))

𝜖(𝐸)𝑎𝑝(𝐸)


=

∫ 𝐶2

𝐶1

2𝜋
√
𝑢
∑

□

𝑞≥1

∑
𝑚∈N

𝜇(gcd(𝑚, 𝑞))

𝑞𝑚𝜙
(

𝑞

gcd(𝑚,𝑞)

) 𝐽1 (
4𝜋

√
𝑢𝑚

𝑞

) ∏
𝑝 |𝑞

ℓ̂𝑝,2𝑣𝑝 (𝑚)
∏

𝑝 |𝑚,𝑝∤𝑞
ℓ𝑝,2𝑣𝑝 (𝑚)d𝑢

You should have a question at this point. We said that Sutherland observed no murmuration pattern in

[33] when elliptic curves are ordered by height, but Theorem 5.1 seems to suggest that there is a murmuration

pattern. In fact, the difference comes from local averaging, which I’m going to explain now.
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The difference between the original murmuration observed in HLOP [13] and the one in Sawin–

Sutherland is well-explained in [25, Section 1.1]. The original murmuration considered the averages of

the form

E𝑁(𝐸)∈[𝑁1 ,𝑁2]
rank(𝐸)=𝑟

[𝑎𝑝(𝐸)]

as a function in 𝑝 for fixed 𝑟, 𝑁1 , 𝑁2 (initially [𝑁1 , 𝑁2] = [7500, 10000] in [13]). As mentioned earlier,

subsequent works (especially [33]) found that we need to view the murmuration density as a function in

𝑝/𝑁 , not 𝑝. Also, it seems better to consider all elliptic curves with same root numbers at once, or weight

𝑎𝑝 by root numbers. Hence the reformulated HLOP’s murmuration would be

E𝑁(𝐸)∈[𝑋,2𝑋][𝜖(𝐸)𝑎𝑝(𝐸)]

In [25], the authors mentioned that Bober suggested that one may need local averaging in 𝑝 before we average

over different elliptic curves, and consider the following double average:

E𝑁(𝐸)∈[𝑋,2𝑋]

[
E𝑝∈(𝐶1𝑁(𝐸),𝐶2𝑁(𝐸))

𝑝 prime

[𝜖(𝐸)𝑎𝑝(𝐸)]
]

It seems analytically better to work with the approximated version

E𝑁(𝐸)∈[𝑋,2𝑋]


log

(
𝑁(𝐸)𝐶1+𝐶2

2

)
𝑁(𝐸)

∑
𝑝∈(𝐶1𝑁(𝐸),𝐶2𝑁(𝐸))

𝜖(𝐸)𝑎𝑝(𝐸)


and replacing the outer conductor ordering by naive height ordering gives Conjecture 5.2, where Theorem

5.1 is a variant of the conjecture where primes are replaced by all 𝑛 ≥ 1 and the weight function is smooth

with compact support. Heuristics like Crámer’s random model suggests that these changes do not affect

the density function.

The main idea of the proof of Theorem 5.1 is the following Voronoi summation formula, where the

summation over 𝑛 instead of primes is built-in inside the formula.

Theorem 5.3 ([25, Lemma 11]). Let 𝐸/Q be an elliptic curves, 𝑞 be a positive integer, 𝑎 a positive integer

coprime to 𝑞, and𝑊 : (0,∞) → R a smooth function with compact support. Then

𝜖(𝐸)
∑
𝑛≥1

𝑎𝑛(𝐸)√
𝑛
𝑊

(
𝑛

𝑁(𝐸)

)
𝑒

(
𝑎𝑛

𝑞

)
=

√
𝑁(𝐸)
𝑞

∑
𝑛≥1

𝑎𝑛(𝐸)√
𝑛
𝑒

(
𝑎𝑁(𝐸)𝑛

𝑞

) ∫ ∞

0

2𝜋𝑊(𝑢)𝐽1
(
4𝜋

√
𝑢𝑛

𝑞

)
d𝑢 (21)

where 𝑒(𝑥) = 𝑒2𝜋𝑖𝑥
and 𝑎𝑁(𝐸) is the multiplicative inverse of 𝑎𝑁(𝐸) modulo 𝑞.

You can find more about the work from Sutherland’s lecture [34] at Tate conference (The legacy of John
Tate, and beyond at Harvard university). He considered it as a murmuration theorem, and might not be the
murmuration theorem since the density formula is too complicated.

6 Other known cases

At last, we mention several other families where murmuration densities have been computed.
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6.1 Flying Hecke characters of imaginary quadratic fields

Wang [36] computed the murmuration density for (possibly trivial) Hecke characters of imaginary quadratic

fields. Let F be the family of nontrivial Hecke characters of Q(
√
−𝐷) for square-free 𝐷 > 3, 𝐷 ≡ 3 (mod 4).

For 𝜓 ∈ F, let 𝑎𝜓(𝑝) =
∑

N𝔭=𝑝 𝜓(𝔭) be the trace of Frobenius at 𝑝. The completed 𝐿-function Λ(𝑠,𝜓) satisfies

the functional equation Λ(1 − 𝑠,𝜓) = Λ(𝑠,𝜓), so the root number is always +1.

Theorem 6.1 (Wang [36]). Then the average of normalized trace

√
𝑝𝑎𝜓(𝑝) over 𝜓 ∈ F with 𝑁𝜓 = |𝐷𝜓 | ∈

[𝑋, 𝑋 + 𝑌] is

E 𝜓∈F
𝑁𝜓∈[𝑋,𝑋+𝑌]

[√𝑝𝑎𝜓(𝑝)] =

∑
𝜓∈F

𝑁𝜓∈[𝑋,𝑋+𝑌]

√
𝑝𝑎𝜓(𝑝)∑

𝜓∈F
𝑁𝜓∈[𝑋,𝑋+𝑌]

1

= 𝑐(𝑝)
∑

1≤𝑚<2

√
𝑦

𝛿𝑚(𝑝)𝑀𝑚(𝑦) +𝑀−(𝑦) + error (22)

where

𝑀𝑚(𝑦) =
11𝜁(2)

4𝐴

√
𝑦

4𝑦 − 𝑚2

𝜗(𝑚), 𝜗(𝑚) = 2
𝜔(𝑚)+min{𝑣2(𝑚),2}

∏
𝑞 |𝑦
𝑞 odd

(
1 +

2𝑞2 + 𝑞 − 1

𝑞4 − 3𝑞2 − 2𝑞 + 2

)
𝑀−(𝑦) = − 11𝜋

12𝐴

√
𝑦

𝑐(𝑝) = 𝑝 + 1

3𝑝

∏
ℓ>2,( 𝑝ℓ )=1

(
1 − 2ℓ−2 − 2ℓ−3

1 − ℓ−2

)

𝛿𝑚(𝑝) =



1(
𝑝
𝑞

)
=1

𝑚 = 𝑞𝑘 , 𝑞 is odd prime

1𝑝≡3 (mod 4) 𝑚 = 2

1𝑝≡5 (mod 4) 𝑚 = 4

1𝑝≡1 (mod 8) 𝑚 = 2
𝜈 , 𝜈 ≥ 3

See [36, Theorem 1] for details. These characters give rise to modular forms of weight 1 via theta series,

and it is conjectured that almost all weight 1 modular forms arise this way [10]. Note that the main term

of (22) depends on the arithmetic of 𝑝. However, the dependence on 𝑝 is explicit and 𝑐(𝑝)𝛿𝑚(𝑝) is almost

periodic in 𝑚, a phenomenon that does not appear in other families. In particular, he proved that taking a

local average over short intervals of 𝑝 removes the dependence on 𝑝. Especially, taking a local average in an

interval of length 𝐻 so that the primes are equidistributed in [𝑋, 𝑋 + 𝐻], in the sense that∑
𝑋≤𝑛≤𝑋+𝐻
𝑛≡𝑎 (mod 𝑞)

Λ(𝑛) = 𝐻

𝜑(𝑞) (1 + 𝑜(1))

where Λ is the von Mangoldt function (for example, 𝐻 = 𝑋
1

2
+𝜖

is enough under RH), then we get the

following theorem.

Theorem 6.2 (Wang [36, Theorem 2]). Let 𝑃 ∼ 𝑋1+𝛿𝑝
be a prime with fixed 𝛿𝑝 ≥ 0. We have

E𝑝∈[𝑃,𝑃+𝐻]

[
E 𝜓∈F
𝑁𝜓∈[𝑋,𝑋+𝑌]

[√
𝑝𝑎𝜓(𝑝)

] ]
= 𝑐

∑
1≤𝑚<2

√
𝑦

𝑀𝑚(𝑦) +𝑀−(𝑦) + 𝑜(1) (23)
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where

𝑐 =
1

3

∏
ℓ>2

(
1 − ℓ−2 − ℓ−3

1 − ℓ−2

)
,

𝑀𝑚(𝑦) =
11𝜁(2)

4𝐴

√
𝑦

4𝑦 − 𝑚2

𝜅(𝑚), 𝜅(𝑚) = 2
1

2|𝑚
∏
𝑞 |𝑚
𝑞 odd

(
1 +

𝑞2

𝑞4 − 2𝑞2 − 𝑞 + 1

)
and 𝑀−(𝑦) is the same as in Theorem 6.1.

The main ingredients of the proof are orthogonality of characters and summation of class numbers in

short intervals with the class number formula, similar to Zubrilina’s approach.

6.2 Flying modular forms (in weight direction)

Recall that Zubrilina computed the murmuration density for a fixed weight 𝑘 and varying level 𝑁 . In [3],

Bober, Booker, M. Lee, and Lowry-Duda considered the opposite case, where they fix the level 𝑁 = 1 and

vary the weight 𝑘. In this case, they considered the family of Hecke newforms whose analytic conductor

𝒩(𝑘) :=

(
exp𝜓(𝑘/2)

2𝜋

)
2

≈
(
𝑘 − 1

4𝜋

)
2

+ 𝑂(1)

are in certain range, where 𝜓(𝑥) = Γ′(𝑥)/Γ(𝑥) is the digamma function.

Theorem 6.3 (Bober–Booker–Lee–Lowry-Duda [3, Theorem 1.1]). Fix 𝜖 ∈ (0, 1

12
), 𝛿 ∈ {0, 1}, and a compact

interval 𝐸 ⊂ R>0 with |𝐸 | > 0. Let 𝐾, 𝐻 > 0 with 𝐾
5

6
+𝜖 < 𝐻 < 𝐾1−𝜖

, and let 𝑁 = 𝒩(𝐾). Then as 𝐾 → ∞, we

have ∑
𝑝 prime

𝑝/𝑁∈𝐸
log 𝑝

∑
𝑘≡2𝛿 (mod 4)
|𝑘−𝐾 |≤𝐻

∑
𝑓 ∈𝐻𝑘 (1) 𝜆 𝑓 (𝑝)∑

𝑝 prime

𝑝/𝑁∈𝐸
log 𝑝

∑
𝑘≡2𝛿 (mod 4)
|𝑘−𝐾 |≤𝐻

∑
𝑓 ∈𝐻𝑘 (1) 1

=
(−1)𝛿√
𝑁

(
𝜈(𝐸)
|𝐸 | + 𝑜𝐸,𝜖(1)

)
(24)

where

𝜈(𝐸) = 1

𝜁(2)
∑∗

(𝑎/𝑞)−2∈𝐸

𝜇(𝑞)2
𝜑(𝑞)2𝜎(𝑞)

(
𝑎

𝑞

)−3

=
1

2

∑
𝑡∈Z

∏
𝑝∤𝑡

𝑝2 − 𝑝 − 1

𝑝2 − 𝑝

∫
𝐸

cos

(
2𝜋𝑡√
𝑦

)
d𝑦 (25)

where the summation

∑∗
indicates that the terms occuring at the endpoints of 𝐸 are halved.

The main tool for the proof is the (original) Eichler–Selberg trace formula, which does not include

Atkin–Lehner operators (e.g. [5, Theorem 2.1]). Then, they apply the class number formula to replace class

numbers with the special values of Dirichlet 𝐿-functions at 𝑠 = 1, which can be estimated under GRH.

6.3 Flying Maass forms

Booker, Lee, Lowry-Duda, Seymour-Howell, and Zubrilina computed murmuration densities for weight 0

and level 1 Maass forms [4]. They considered a family of Maass forms where the spectral parameter (𝑅 with

𝜆 = 1

4
+ 𝑅2

) goes to ∞, which is equivalent to the analytic conductor

𝒩(𝑅) :=

exp

(
𝜓

(
1/2+𝑎+𝑖𝑅

2

))
+ exp

(
𝜓

(
1/2+𝑎−𝑖𝑅

2

))
𝜋2

≈ 𝑅2

4𝜋2

+ 𝑂(1)

18



going to ∞. Here 𝑎 = 0 (resp. 𝑎 = 1) if the Maass form is even (resp. odd).

Theorem 6.4 (Booker–Lee–Lowry-Duda–Seymour-Howell–Zubrilina [4, Theorem 1.1]). Let 𝐸 ⊂ R>0 be a

fixed compact interval with |𝐸 | > 0. Let 𝑅, 𝐻 > 0 with 𝑅
5

6
+𝛿 < 𝐻 < 𝑅1−𝛿

for some 𝛿 > 0 and 𝑁 = 𝒩(𝑅).
Assuming GRH for 𝐿-functions of Dirichlet characters and Maass forms, as 𝑅 → ∞ we have∑

𝑝 prime

𝑝/𝑁∈𝐸
log 𝑝

∑
|𝑟( 𝑓 )−𝑅 |≤𝐻 𝜖( 𝑓 )𝑎 𝑓 (𝑝)∑

𝑝 prime

𝑝/𝑁∈𝐸
log 𝑝

∑
|𝑟( 𝑓 )−𝑅 |≤𝐻 1

→ (−1)𝛿√
𝑁

(
𝜈(𝐸)
|𝐸 | + 𝑜𝐸,𝜖(1)

)
(26)

where 𝜈(𝐸) is the same as (25) of Theorem 6.3.

Proof uses an explicit Selberg trace formula due to Str"ombergsson in his unpublished work [32], which

requires an analytic test function and cannot be compactly supported, where GRH is needed to control the

cutoff error term. The remainder of the proof is similar to the weight aspect case of the modular forms [3].

7 General formulation of Murmuration

In his letter to Sutherland and Zubrilina, Sarnak proposed a general framework of murmuration [23] for

families of 𝐿-functions. We explain his definition and its connection with the Katz–Sarnak philosophy [16, 17].

Also, we revisit previous murmuration results [37, 18, 25, 36] in this framework. See also Lowry-Duda’s

survey note [19].

7.1 Murmuration for families

Let F be a family of 𝐿-functions in a suitable sense (e.g. See [24]). For a smooth nonnegative function

Φ : (0,∞) → Rwith compact support and 𝑓 : F → C, consider the Φ-weighted average of 𝑓 :

E𝜋∈F[ 𝑓 ;Φ, 𝑁] :=

∑
𝜋∈F Φ

(
𝑁𝜋
𝑁

)
𝑓 (𝜋)∑

𝜋∈F Φ

(
𝑁𝜋
𝑁

) =
𝐴F( 𝑓 ;Φ, 𝑁)
𝐴F(1;Φ, 𝑁) (27)

where

𝐴F( 𝑓 ;Φ, 𝑁) :=
∑
𝜋∈F

Φ

(
𝑁𝜋

𝑁

)
𝑓 (𝜋). (28)

Here 𝑁𝜋 is the “conductor” of 𝜋 (e.g. conductor of an elliptic curve or analytic conductor of an automorphic

form). When we order the family by the conductor, we say that F has conductor dimension 𝛿 if

#{𝜋 ∈ F : 𝑁𝜋 ≤ 𝑁} ∼ 𝛼𝑁𝛿
(29)

as 𝑁 → ∞ for some 𝛼 > 0 and 𝛿 = 𝛿(F) > 0. For such family, we have

𝐴F(1;Φ, 𝑁) ∼ 𝛼𝛿𝑁𝛿

∫ ∞

0

Φ(𝑥)𝑥𝛿 d𝑥

𝑥
.

Most of the known murmuration results consider the function

𝑓 (𝜋) = 𝑎𝜋(𝑝) :=
√
𝑝𝜆𝜋(𝑝) (30)
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for a given prime 𝑝, where 𝜆𝜋(𝑝) is the normalized trace of Frobenius at 𝑝 so that the Ramanujan–Petersson

conjecture says |𝜆𝜋(𝑝)| ≤ 𝑛 for GL𝑛 automorphic forms 𝜋. Furthermore, if F is self-dual, then 𝑎𝜋(𝑝) is real

and the global root number 𝑤𝜋 is either 1 or −1. Then we can separate by root number and consider the

averages

E𝜋∈F𝑤 [𝑎𝜋(𝑝);Φ, 𝑁] (31)

for 𝑤 ∈ {±1} and F𝑤 = {𝜋 ∈ F : 𝑤𝜋 = 𝑤}.

Definition 7.1. A continuous function 𝑀Φ : (0,∞) → R is a murmuration function for F with weight Φ if there

is 0 ≤ 𝛾 < 1 such that for 𝑃 ∼ 𝑁

E𝜋∈F[𝑎𝜋(𝑝);Φ, 𝑁] = 𝑀Φ

( 𝑝
𝑁

)
+ 𝑅(𝑝, 𝑁) (32)

where the local oscillating term 𝑅(𝑝, 𝑁) satisfies2

E𝑃≤𝑝≤𝑃+𝐻[𝑅(𝑝, 𝑁)] =
∑
𝑃≤𝑝≤𝑃+𝐻 𝑅(𝑝, 𝑁)∑

𝑃≤𝑝≤𝑃+𝐻 1

= 𝑜(1) (33)

for 𝐻 = 𝑜(𝑁).

Equation (33) is the local averaging over 𝑝 of length at least 𝑁𝛾
and less than 𝑁 . The smaller 𝛾 we can

take, the more visible 𝑀Φ is. In particular, 𝛾 = 0 means that no local averaging is needed. He conjectured

that if

𝛿 + 𝛾 > 1 (34)

then the local oscillating term 𝑅(𝑝, 𝑁) will vanish as 𝑁 → ∞. In particular, we may not need local averaging

if 𝛿 > 1.

The function 𝑀Φ is supposed to have a form of

𝑀Φ(𝑦) =
∫ ∞

0

Φ(𝑢)𝑀
( 𝑦
𝑢

)
𝑢𝛿 d𝑢

𝑢∫ ∞
0

Φ(𝑢)𝑢𝛿 d𝑢
𝑢

. (35)

for some universal 𝑀 : (0,∞) → R. If such a function (more generally, distribution) exists, we call it as

Zubrilina murmuration density for F, denoted as 𝑍F. It might be a distribution on 𝐶∞
𝑐 ((0,∞)) rather than a

function.

7.2 Katz–Sarnak philosophy

Katz and Sarnak [16, 17] studied statistics of zeros of 𝐿-functions via random matrix models. In particular,

they considered one-level density of low-lying zeros: for an even function 𝜙 with rapid decay as |𝑥 | → ∞, the

one-level density of a family F is

OLD(F; 𝜙) = lim

𝑁→∞
E𝜋∈F(𝑁)

[∑
𝛾𝜋

𝜙

(
𝛾𝜋 log𝑁

2𝜋

)]
(36)

2In [23], he considered local average over primes 𝑃 − 𝐻 ≤ 𝑝 ≤ 𝑃 + 𝐻 instead of 𝑃 ≤ 𝑝 ≤ 𝑃 + 𝐻, but most of the latter works seems

to follow one-sided averaging.
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where F(𝑁) := {𝜋 ∈ F : 𝑁𝜋 = 𝑁} and 𝛾𝜋 runs through the ordinates of nontrivial zeros of 𝐿(𝑠,𝜋) on the

critical line, i.e. 𝐿
(

1

2
+ 𝑖𝛾𝜋 ,𝜋

)
= 0. The factor

log𝑁

2𝜋 guarantees that the nontrivial zeros have unit spacing on

average. Katz–Sarnak philosophy claims that there is a measure 𝑊F coming from matrices related to the

“type” of F such that

OLD(F; 𝜙) =
∫
R
𝜙(𝑥)𝑊F(𝑥)d𝑥 (37)

for any nice test function 𝜙. We say that F has orthogonal/symplectic/unitary symmetry type if𝑊F comes

from one of the orthogonal/symplectic/unitary groups. More precisely, let 𝐺(𝑁) be one of the “ensembles”

in [16, Table 1], e.g. 𝐺(𝑁) = U(𝑁), the compact group of 𝑁 ×𝑁 unitary matrices. Let d𝐴 be a Haar measure

on 𝐺(𝑁), and let 𝑒 𝑖𝜃1(𝐴) , . . . , 𝑒 𝑖𝜃𝑁 (𝐴) be the eigenvalues of 𝐴 ∈ 𝐺(𝑁), where 0 ≤ 𝜃1(𝐴) ≤ · · · ≤ 𝜃𝑁 (𝐴) < 2𝜋.

Let

Δ(𝐴)[𝑎, 𝑏] := #{𝜃(𝐴) : 𝑒 𝑖𝜃(𝐴) is an eigenvalue of 𝐴 and

𝜃(𝐴)𝑁
2𝜋

∈ [𝑎, 𝑏]}.

Then we have a density function𝑊𝐺 : R→ R≥0 such that for any interval [𝑎, 𝑏] ⊂ R,

lim

𝑁→∞

∫
𝐺(𝑁)

Δ(𝐴)[𝑎, 𝑏]d𝐴 =

∫ 𝑏

𝑎

𝑊𝐺(𝑥)d𝑥.

For example,𝑊𝐺 for unitary/orthogonal/symplectic groups are given by

𝑊U(𝑥) = 1, (38)

𝑊
SO(+)(𝑥) = 1 + sin(2𝜋𝑥)

2𝜋𝑥
, (39)

𝑊
SO(−)(𝑥) = 1 − sin(2𝜋𝑥)

2𝜋𝑥
+ 𝛿0(𝑥), (40)

𝑊Sp(𝑥) = 1 − sin(2𝜋𝑥)
2𝜋𝑥

. (41)

One such example is the following theorem on the family of Hecke eigenforms by Iwaniec, Luo, and

Sarnak [15], showing that the family has orthogonal symmetry type.

Theorem 7.2 (Iwaniec–Luo–Sarnak [15]). Assume GRH. Let 𝜙 be an even Schwartz function with supp(𝜙) ⊂
(−2, 2). Let 𝐻±

𝑘
be a set of Hecke eigenforms of weight 𝑘 and root number 𝜖 = ±1. Then

OLD(𝐻±
𝑘 ; 𝜙) =

∫
R
𝜙(𝑥)�𝑊

SO(±)(𝑥)d𝑥 (42)

There is an explicit formula relating the summation over zeros of 𝐿-functions and over primes, which is

given by [15, Section 4]

∑
𝛾𝜋

𝜙

(
𝛾𝜋 log𝑁

2𝜋

)
= 𝐶 − 2

∑
𝑝

∑
𝜈≥1

©­«
∑
𝑗

𝛼 𝑗(𝑝)𝜈ª®¬𝜙
(
𝜈 log 𝑝

log𝑁

)
log 𝑝

𝑝𝜈/2
log𝑁

and since 𝜙 is compactly supported, the main contribution comes from 𝜈 = 1 summand, so we are mostly

interested in ∑
𝑝

𝜆𝜋(𝑝)
𝑝1/2

𝜙

(
log 𝑝

log𝑁

)
log 𝑝

log𝑁
(43)
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The Fourier transforms of (38) are

�𝑊
SO(+)(𝑦) = 𝛿0(𝑦) +

2 − 1[−1,1](𝑦)
2

, �𝑊
SO(−)(𝑦) = 𝛿0(𝑦) +

1[−1,1](𝑦)
2

(44)

and there are obvious discontinuities at 𝑦 = ±1. Hence, at least roughly, this suggests that the behavior of

the average of 𝜆𝜋(𝑝)/𝑝1/2
with 𝑝 ∼ 𝑁 𝑎

changes at 𝑎 = 1. Katz–Sarnak philosophy suggests that, when F is

of symplectic type, then

E𝑝∼𝑁 𝑎 [E𝜋∈F[𝑎𝜋(𝑝);Φ, 𝑁]] →
{

0 𝑎 < 1

− 1

2
𝑎 > 1

and when F is of orthogonal type,

E𝑝∼𝑁 𝑎 [E𝜋∈F𝑤 [𝑎𝜋(𝑝);Φ, 𝑁]] →
{

0 𝑎 < 1

𝑤
2

𝑎 > 1

(see [23, eq. (7’)]). Each 𝑎 < 1 and 𝑎 > 1 corresponds to the limit of 𝑀Φ(𝑦) as 𝑦 → 0 and 𝑦 → ∞.

7.3 Revisiting the murmuration theorems

Let’s see how the existing works on murmurations fit into the above framework.

7.3.1 Dirichlet characters

In case of Dirichlet characters [18], the family of even/odd complex Dirichlet characters are not self-dual, so

it does not fit into Sarnak’s framework precisely. Still, we can observe and prove murmuration phenomena

for such a family, where the density function is much simpler compared to other families. Also, for each

prime 𝑃, there are 𝜙(𝑃) = 𝑃 − 1 primitive characters modulo 𝑃, so there are about
𝐶𝑁2

log𝑁
primitive Dirichlet

characters of prime conductors ≤ 𝑁 for some constant 𝐶 > 0, which means that the conductor dimension of

the family is 2− 𝜖3. In particular, (34) suggests that we don’t need any further local averaging for the family,

which is indeed the case of Theorem 3.1. Note that normalization used in Theorem 3.1 is also different from

the one Sarnak suggested.

For the quadratic characters, local averaging is included in Theorem 3.2 over 𝑋𝛾
-many primes with

3

4
< 𝛾 < 1. Since the number of square-free odd numbers up to 𝑋 is Θ(𝑋), the conductor dimension of

the family F = {𝜒8𝑑 : 𝑑 odd and square-free} is 𝛿 = 1 so we may only need local averaging over 𝑋𝜖
-many

primes for any 𝜖 > 0 from (34). From Theorem 3.2, the Zubrilina density for the family is

𝑍F(𝑦) =
√

2

2

∑
𝑎≥1

gcd(𝑎,2)=1

𝜇(𝑎)
𝑎2

∑
𝑚≥1

(−1)𝑚 cos

(
𝜋𝑚2

𝑎2𝑦
− 𝜋

4

)
. (45)

Note that this is not an actual function but rather a distribution, since the inner sum in 𝑚 diverges for the

most of 𝑦’s. It seems that the distribution is a certain combination of delta functions at rational points,

although it is not mentioned in [18]. Figure 7 shows that it might be supported at 0, 1

5
, 3

5
, 4

5
, 1, etc.

3The log𝑁 factor disappears if we consider all conductors that are not necessarily prime, and the conductor dimension becomes

2. See [18, Section 6] for the version including composite conductors.
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Figure 7: Plot of 𝑍F(𝑦) for 𝑦 = 𝑖
500

with 1 ≤ 𝑖 ≤ 500, truncated at 𝑎 < 200 and 𝑚 ≤ 100.

7.3.2 Modular forms

It is known that the dimension of the space of newforms of fixed weight 𝑘 and level Γ0(𝑁) is asymptotically

45(𝑘−1)𝑁
𝜋2

[20, Theorem 8]. It implies that the number of newforms of fixed weight 𝑘 and level Γ0(𝑀) for

square-free 𝑀 ≤ 𝑁 is asymptotically 𝑐𝑘𝑁
2

for a constant 𝑐𝑘 > 0, so the conductor dimension of the family

is 2 > 1. From Sarnak’s suggestion (34), we expect that we don’t need any further local averaging, and this

is indeed the case of Theorem 4.1 and 4.5.

Also, she studied several properties of her density function ℳ𝑘 . In particular, for a compactly supported

smooth function Φ on (0,∞), she proved that the function

ℳ𝑘
Φ
(𝑦) :=

∫ ∞
0

ℳ𝑘

( 𝑦
𝑢

)
Φ(𝑢)𝑢2 d𝑢

𝑢∫ ∞
0

Φ(𝑢)𝑢2 d𝑢
𝑢

(46)

is continuous in 𝑦 and

lim

𝑦→0
+
ℳ𝑘(𝑦) = 0, lim

𝑦→∞
ℳ𝑘(𝑦) =

1

2

.

This is compatible with Katz–Sarnak philosophy, since the family of modular forms has orthogonal sym-

metry type.

7.3.3 Elliptic curves

The conductor dimension of a family of elliptic curves ordered by conductor is conjecturally
5

6
[28], so we

may need local averaging over 𝑋1/6+𝜖
-many primes from (34), although it is clear that there’s an obvious

murmuration pattern in the case (that’s the first ever murmuration oberved in number theory!). In fact, it

seems that the noise may still exist even if we increase the conductor range, as partially shown in Figure 2

(Sutherland computed murmuration up to the range of [250000, 500000] [33], which is not reproduced in

Figure 2 due to the computational limitation). Figure 8 shows the murmuration of non-CM elliptic curves

with conductor in [2𝑘 , 2𝑘+1) and primes 𝑝 < 2
𝑘

for 𝑘 = 12, . . . , 16 weighted by root numbers, without (resp.

with) local averaging of 𝑋𝛾 = 𝑋
1

2 -many primes. Smaller 𝛾 gives less visible (purple) curves with larger

noise.

In the case of [25], the conductor dimension of a family of elliptic curves ordered by heights is also

(non-conjecturally)
5

6
, so we may need further local averaging over 𝑋1/6+𝜖

many primes. The local averaging

introduced in Theorem 5.1 is slightly different from Sarnak’s suggestion, since they take a local average over

Θ(𝑁𝐸)-many primes, not 𝑂(𝐻1/6+𝜖
𝐸

).
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Figure 8: Murmuration of non-CM elliptic curves with conductor in [2𝑘 , 2𝑘+1) and primes 𝑝 < 2
𝑘 for 𝑘 = 12, . . . , 16 weighted by root numbers,

without (resp. with) local averaging of 𝑋𝛾 = 𝑋
1

2 -many primes.
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7.4 Hecke characters of imaginary quadratic fields

For each 𝐷 ≡ 3 (mod 4), the number of Hecke characters of Cl(Q(
√
−𝐷)) is ℎ(−𝐷), and the class number

formula

ℎ(−𝐷) =
√
𝐷

𝜋
𝐿(1, 𝜒−𝐷)

with the estimates |𝐷 |−𝜖 ≪ 𝐿(1, 𝜒−𝐷) ≪ |𝐷 |𝜖 4 implies that the conductor dimension of F is
3

2
. In particular,

it is larger than 1, so we may not need any local averaging from (34). However, we still include it in Theorem

6.2 to remove the dependence on 𝑝 in the main term of Theorem 6.1. The main term

𝑀(𝑦) = 𝑐
∑

1≤𝑚<2

√
𝑦

𝑀𝑚(𝑦) +𝑀−(𝑦)

in Theorem 6.2 is the murmuration density for the family F, so we expect that

E𝑃≤𝑝≤𝑃+𝑁
[
E𝜓∈F[

√
𝑝𝑎𝜓(𝑝);Φ, 𝑁]

]
= 𝑀Φ

( 𝑝
𝑁

)
+ 𝑜(1) (47)

for a compactly supported smooth function Φ on (0,∞) and

𝑀Φ(𝑦) =
∫ ∞

0

𝑀
( 𝑦
𝑢

)
Φ(𝑢)𝑢3/2 d𝑢

𝑢∫ ∞
0

Φ(𝑢)𝑢3/2 d𝑢
𝑢

. (48)

The family is expected to have a symplectic symmetry type [9, 24], so we expect

lim

𝑦→0
+
𝑀Φ(𝑦) = 0, lim

𝑦→∞
𝑀Φ(𝑦) = −1

2

and this is Theorem 3 of [36]. (Recall that Zubrilina’s family has an orthogonal symmetry type.)

4The lower bound is Siegel’s theorem, while the upper bound follows from the Pólya–Vinogradov inequality.
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