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Abstract

In this note, we introduce some simple and nontrivial facts about p-
adic numbers. Most of the results here can be generalized to any complete
DVRs or Henselian fields. You may need to know some basic notion of
local fields such as unramified and totally ramified extensions, Newton
polygon, Hensel’s lemma, etc. See [7] for such definitions.

1 The only automorphism is the identity.

Theorem 1. Let f : Qp → Qp be a field automorphism. The f = id.

Proof. This proof is adapted from Jyrki Lahtonen’s answer on MSE [4]. Note
that this is true for p = ∞, where Qp = R. We will prove that case first,
which gives an intuition for the proof of non-archimedean case. Assume that
ϕ : R → R is a field automorphism. So ϕ|Q = id. Since Q is dense in R, it is
enough to show that ϕ is continuous. For any a ∈ R, we have ϕ(a2) = ϕ(a)2 ≥ 0.
This implies that ϕ(R≥0) ⊆ R≥0. Now if a ≤ b, we have

ϕ(b)− ϕ(a) = ϕ(b− a) = ϕ((b− a)1/2)2 ≥ 0

so ϕ(a) ≤ ϕ(b), i.e. ϕ is an increasing function. Now, let a ∈ R be given.
Choose sequences of rational numbers {rn} and {sn} such that rn ≤ a ≤ sn
and rn (resp. sn) increases (resp. decreases), and both converges to a. Then

rn = ϕ(rn) ≤ ϕ(a) ≤ ϕ(sn) = sn,

and taking the limit n→∞ gives ϕ(a) = a.
For non-archimedean case, we will also use square as we did for R. First,

assume p > 2 and let ϕ : Qp → Qp be a field automorphism. Assume that we
proved ϕ fixes Zp, i.e. ϕ(Zp) = Zp. Then ϕ−1(pkZp) = pkZp for any k ≥ 0,
which implies that ϕ is continuous (since pkZp form a basis of the topology at
0), and so ϕ|Zp = id from the fact that Z is dense in Zp.

To prove that ϕ(Zp) = Zp, we will use the following lemma.

Lemma 1. Let x ∈ Qp. 1 + px2 is square in Qp if and only if x ∈ Zp.
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Proof. If x 6∈ Zp, then x = p−mu for some u ∈ Z×p and m ≥ 1, so that v(1 +
px2) = v(1 + p−2m+1u2) = −2m+ 1, which is odd. If x ∈ Zp, then we can use
Hansel’s lemma: the polynomial f(t) = t2 − (1 + px2) splits mod p, so it has a
solution in Qp (which is also in Zp by considering the valuation). Here we need
p > 2 to apply Hansel’s lemma.

By the lemma, we have

x ∈ Zp ⇔ 1 + px2 = y2 ⇔ 1 + pϕ(x)2 = ϕ(y)2 ⇔ ϕ(x) ∈ Zp
so ϕ(Zp) = Zp.

For p = 2, we need a slight modification. We can use the following variation.

Lemma 2. Let x ∈ Q2. 1 + 8x2 is square in Q2 if and only if x ∈ Z2.

Proof. Assume that x 6∈ Z2, so that x = 2−mu with m ≥ 1 and u ∈ Z×2 . If
m = 1, then 2x ≡ 1 (mod 2) and 1 + 8x2 ≡ 3 (mod 4), which can’t be a square
mod 4. If m ≥ 2, then v(1 + 8x2) = v(1 + 2−2m+3u2) = −2m + 3 is odd, so
is not square again. If x ∈ Z2, let f(t) = t2 − (1 + 8x2) and let a = 1. Since
f(a) = −8x2 and f ′(a) = 2, |f(a)|2 < |f ′(a)|22, Hensel’s lemma shows that there
exists b ∈ Q2 such that f(b) = b2−(1+8x2) = 0 and |b−a|2 < |f ′(a)|2 = 1

2 .

As before, this shows ϕ(Z2) = Z2 and continuity of ϕ.

2 They are different for distinct p’s.

Theorem 2. Qp ' Qq if and only if p = q.

Proof. Again, such isomorphism should fix Q. We will show that there exists
a ∈ Z such that

√
a exists in Qq but not in Qp, which gives a contradiction.

This follows from the following lemma:

Lemma 3. There exists m ∈ Z such that p - m and
(
mp
q

)
= 1.

Proof. Assume that q > 2. If
(
p
q

)
= 1, then we can choose m = 1. If

(
p
q

)
= −1,

choose m′ ∈ Z with
(
m′

q

)
= −1 (such m′ exists since q > 2). Then at least one

of m′ and m′ + q is not a multiple of p. Let m be such one. Then(
mp

q

)
=

(
m

q

)(
p

q

)
=

(
m′

q

)(
p

q

)
= (−1)(−1) = 1.

Now consider f(x) = x2−mp. This doesn’t have a solution in Qp: if α ∈ Qp
satisfies α2 = mp, then v(α) = 1

2v(mp) = 1
2 , which is not an integer. However,

the equation has a solution in Qq by Hensel’s lemma.
As before, this is also true when q = ∞, so that Qq = R. If p > 3, then

Qp has (p− 1)-many distinct solution of xp−1− 1 = 0 (by Hensel’s lemma), but
R has only two solutions. For p = 2, Q2 has

√
−7 (by Hensel’s lemma), but R

doesn’t. For p = 3, Q3 has
√
−2, but R doesn’t.
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3 Correlation between Algebraic and Analytic
Properties

As we know, we can define Qp in both algebraic and analytic way. For algebraic
definition, we define Zp as an inverse limit

Zp := lim←−
n

Z/pnZ

and Qp := Frac(Zp). For analytic definition, we define Qp as a completion of
Q with respect to the p-adic norm | · |p. The following theorems gives some
interesting relations between algebraic and analytic properties. Recall that we
define

|f | := max
0≤i≤n

{|ai|}

for a polynomial f(x) = anx
n + · · · + a1x + a0 ∈ K[x]. If α is a zero of f(x),

we have

|α| ≤ max

{
1,

n−1∑
i=0

∣∣∣ ai
an

∣∣∣} .
Indeed, there’s nothing to prove for |α| ≤ 1, and if |α| > 1, we have

|α|n =
∣∣∣an−1
an

αn−1 + · · ·+ a0
an

∣∣∣ ≤ max
0≤i≤n−1

{∣∣∣ ai
an
αi
∣∣∣} ≤ |α|n−1 n−1∑

i=0

∣∣∣ ai
an

∣∣∣
which proves the inequality.

Theorem 3. In a Henselian field the zeros of a polynomial are continuous
functions on its coefficients. More precisely, let f(x) ∈ K[x] be a polynomial of
degree n with n distinct zeros α1, . . . , αn. If the polynomial g(x) of degree n has
all coefficients sufficiently close to those of f(x), then it has n roots β1, . . . , βn
which approximate the α1, . . . , αn to any given precision.

Proof. Let f(x) = anx
n + · · ·+ an = an(x−α1)(x−α2) · · · (x−αn) and ε > 0.

Choose δ > 0 so that

δ ≤ min

{
|an|

2
,
|an|εn∑n
i=0M

i
,
|an|εn

2
∑n
i=0N

i

}
where

M =

n−1∑
i=0

(
1 + 2

|ai|
|an|

)
, N = max

{
1,

n−1∑
i=0

∣∣∣ ai
an

∣∣∣} .
Suppose that g(x) ∈ K[x] satisfies |f − g| < δ, and let β be any root of g.

Then |an| ≤ |an − bn| + |bn| < δ + |bn| ≤ δ
2 + |bn| gives |bi||bn| ≤ 2 · |ai−bi|+|ai||bn| ≤

2δ
|an| + 2 |ai||an| ≤ 1 + 2 |ai||an| . So we get |β| ≤M . Thus

|f(β)| = |f(β)− g(β)| ≤
n∑
i=0

|ai − bi||β|i < δ

n∑
i=0

M i < |an|εn.
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Therefore |an|
∏n
i=1 |β − αi| < |an|εn ⇔

∏n
i=1 |β − αi| < εn, hence one of the

factors |β − αi| must be smaller than ε. This shows that β is within ε of a root
of f . Conversely, we can prove that for any zero α of f(x), there exists a zero of

g(x) very close to α by the same argument (using |α| ≤ N and |an|2 ≤ |bn|).

Lemma 4 (Krasner). Let K be an Henselian field, α ∈ K be separable over K
and let α = α1, α2, . . . , αn be its conjugates over K. If β ∈ K and

|α− β| < |α− αi|, i = 2, . . . , n,

then K(α) ⊆ K(β).

Proof. Assume that α 6∈ K(β). Then K(α, β)/K(β) is a field extension of
degree > 1, and it is separable since α is separable over K. So we have an
field embedding σ : K(α, β) ↪→ K such that σ|K(β) = id, but σ(α) 6= α. Then
σ(α) = αi for some 2 ≤ i ≤ n, and since the valuation is invariant under the
field automorphism (by the uniqueness extension property of Henselian field)

|β − α| = |σ(β − α)| = |β − αi|.

However, this implies

|α− αi| ≤ max{|α− β|, |β − αi|} = |β − αi|,

which contradicts to the assumption.

The following corollary shows that how analysis can govern algebra in p-adic
(or more generally, in Henselian) fields.

Corollary 1. Let f(x) ∈ K[x] be an irreducible polynomial over a Henselian
field K which is separable, and let α ∈ K be a zero of f(x). Then there exists
δ > 0 such that for all g(x) ∈ K[x] with |f − g| < δ, there exists a zero β ∈ K
of g(x) such that K(α) = K(β). In particular, g(x) is also irreducible.

Proof. By Theorem 3, there exists δ > 0 such that a polynomial any g(x) ∈ K[x]
with |f − g| < δ satisfies

|αi − βi| < min{|αi − βj |, |αj − βi|}

for all 1 ≤ i 6= j ≤, where β1, . . . , βn ∈ K are zeros of g(x). By Lemma 4, we
have K(αi) = K(βi).

Using these, we can prove that the algebraic closure of Qp is not complete,
but its completion is algebraically closed.

Theorem 4. For any p, the algebraic closure Qp of Qp is not complete under the

p-adic metric extended to Qp. However, its completion Cp := Q̂p is algebraically
closed.
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Proof. For the first statement, let’s consider the sequence

an =

n∑
k=1

pn+
1
n

in Qp. It is clear that an ∈ Qp, and also the sequence {an}n≥1 is a Cauchy
sequence since |sn− sn−1| = |pn+1/n| ≤ p−(n+1/n) converges to 0. However, the
limit does not exist in Qp. Indeed, let β be any element in Qp which has degree
m over Qp. If we consider the Newton polygon of the minimal polynomial f(x)
of β, valuation of each zeros should be a form of ab for some 1 ≤ b ≤ m. In other
words, denominators of the valuations are bounded by m!. However, it is not
hard to check that v(an) = a

b for b = lcm{1, 2, . . . , n}, which tends to infinity

as n grows. Thus limn→∞ an does not exist in Qp.
We will use the above lemmas to prove the second statement. Let α be a

zero of some monic polynomial f(x) = anx
n + · · · + a0 ∈ Cp[x]. We want to

show that α ∈ Cp. By the Corollary, we can find g(x) ∈ Qp[x] such that |f − g|
is sufficiently small so Cp(α) = Cp(β) for some zero β ∈ Qp of g(x). This proves
α ∈ Cp.

In fact, the above theorem is true for any field which is complete with respect
to some non-trivial non-archimedean absolute value | · |. See [1] for the proof.

4 Extensions of Qp

There are some interesting things happen for extensions of Qp. First, there are
only finitely many extensions of Qp with a given degree.

Theorem 5. For any n ≥ 1, there are only finitely many extensions K/Qp with
[K : Qp] = n. In particular, there exists a unique unramified extension of Qp of
given degree, which is cyclic.

Proof. For unramified extension of given degree, it is not hard to show that
Kd = Qp(ζpd−1) is a degree d unramified extension of Qp. (For example, see
[7].) To show the uniqueness of unramified extensions, it is enough to show that
there is a 1-1 correspondence between finite unramified extensions of Qp and
finite extensions of the residue field Fp. In fact, if K1,K2 are two unramified
extensions of same degree n, then both have a residue field Fpn . The compositum
L = K1K2 is also unramified with a residue field Fpn , so

[K1K2 : Qp] = n = [K1 : Qp]

which gives K1 = K2.
Now, we will show that there are finitely many totally ramified extensions of

a given degree. First, we can show that every totally ramified extension is a form
of Qp(α) for some α which is a zero of an Eisenstein polynomial (polynomial
whose Newton polygon has only one segment with a slope 1/n = 1/ deg f). If
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K = Qp(α) for some zero α of an Eisenstein polynomial, then v(α) = 1/n by the
theory of Newton polygon. So K/Qp is totally ramified. Conversely, if K/Qp
is totally ramified, there exist α ∈ K such that v(α) = 1/n. By the following
simple lemma, 1, α, . . . , αn−1 are all Qp-linearly independent:

Lemma 5. If b1 + · · ·+ bm = 0 for b1, . . . , bm ∈ K, then the minimum of v(bi)
is obtained by at least two i’s.

Proof. If not, we may assume that v(b1) < v(bi) for all 2 ≤ i ≤ m. Then v(a1) =
v(−a1) = v(a2+· · ·+am) ≥ min{v(a2), . . . , v(am)} > v(a1), a contradiction.

Note that all 1, α, . . . , αn−1 have different valuations. So deg(α) ≥ n and
K = Qp(α). Now let f(x) = xn+an−1x

n−1+· · ·+a1x+a0 ∈ Qp[x] be a minimal
polynomial of α. By the lemma again, we should have v(a1), . . . , v(an−1) ≥ 0
and v(a0) = 1, which means that f(x) is an Eisenstein polynomial.

Now we can prove our claim. For each (a0, . . . , an−1) ∈ pZ×p ×pZp×· · ·×pZp,
we have an Eisenstein polynomial f(x) = xn+an−1x

n−1+· · ·+a0. By Krasner’s
lemma (Lemma 4), each (a0, . . . , an−1) has a neighborhood which defines a same
splitting field over Qp. Since pZ×p × pZp × · · · pZp is compact, it can covered by
finitely many such open subsets, which means that we only need finitely many
Eisenstein polynomials to cover all the totally ramified extensions. Combining
these two results about unramified and totally ramified extensions, we get the
theorem.

We can even find all the quadratic extensions of Qp.

Theorem 6. Let p > 2 be an odd prime. Then there are exactly three noniso-
morphic quadratic extensions of Qp,

Qp(
√
p),Qp(

√
u),Qp(

√
pu),

where u ∈ Z is a non-quadratic residue mod p. Also, there are 7 quadratic
extensions of Q2,

Q2(
√
−1),Q2(

√
±2),Q2(

√
±5),Q2(

√
±10).

Proof. Every quadratic extension has a form of Qp(
√
D) for some D ∈ Qp−Q2

p,

and Qp(
√
D) = Qp(

√
D′) if and only if D/D′ ∈ Q2

p. So we can reduce the
problem to find representatives of Q×p /(Q×p )2.

First, let p > 2. It is not hard to show that p, u, pu are all not in Q2
p and

their image in Q×p /(Q×p )2 are all different. Now let a ∈ Qp−Q2
p. By multiplying

suitable power of p2, we can assume that a ∈ Zp with 0 ≤ vp(a) ≤ 1. If vp(a) = 0
and a = a0+a1p+ · · · , then a ∈ Q2

p if and only if a0 is a quadratic residue mod p
by Hensel’s lemma. When a0 is not a quadratic residue, then u−1a (mod p) is a
quadratic residue and so u−1a ∈ Q2

p. This means that
√
a ∈ Qp(

√
u). Similarly,

we can prove that a ∈ Qp(
√
p) or Qp(

√
pu) when vp(a) = 1.

For p = 2, a situation is more technical. First, we can show that they are
all degree 2 extensions. If −1 is square in Q2, then it is also square in Z2 since
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it has valuation 0, and this is impossible since there’s no solution of x2 + 1 = 0
mod 4. Similarly, 5 and −5 are not squares because of mod 4 or 8. ±2 and ±10
are not squares since their valuations are 1, which is odd.

To show that they are all, it is enough to show that all D ∈ Z with D ≡
1 (mod 8) are square in Z2. This follows from (strong) Hensel’s lemma - if we
put f(x) = x2 −D, then |f(1)|2 ≤ 2−3 < 2−2 = |f ′(1)|22, so there exists a ∈ Z2

such that f(a) = a2 − D = 0 (with |a − 1|2 < |f ′(1)|2 = 2−2. Then we can
proceed as we did above.

This theorem tells us that extensions of Qp are much simpler than extensions
of global fields, such as Q. How about Galois groups? As we know, Abel proved
that there’s no general formula to solve quintic equation. More precisely, there
exists a degree 5 polynomial over Q whose roots can’t be represented as radicals.
However, for Qp, we can prove that every finite Galois extension of Qp are
solvable. Before we prove it, we define higher ramification groups, which give a
filtration of normal subgroups of the Galois group.

Definition 1. Let K/Qp be a finite Galois extension and let G = Gal(K/Qp)
be a Galois group. . Let vK be a normalized valuation on K which extends the
p-adic valuation on Qp. For each s ≥ −1, we define the higher ramification
groups as

Gs = Gs(K/Qp) := {σ ∈ G : vK(σ(a)− a) ≥ s+ 1 ∀a ∈ OK}

It is easy to check that

G = G−1 ⊇ G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gs0 = {1}

is a filtration of G which are all normal subgroups and Gs = {1} for sufficiently
large s.

Proposition 1. Let πK be a uniformizer of K. For any s ≥ 0, we have a
well-defined homomorphism

Gs/Gs+1 → U
(s)
K /U

(s+1)
K , σ 7→ σ(πK)

πK

is an injective homomorphism which is independent of the choice of πK . Here

U
(0)
K = O×K and U

(s)
K = 1 + πsKOK for s ≥ 1.

Proof. The most tricky part is injectivity. We will only prove injectivity for
s = 0, and s ≥ 1 case is similar. (You can find the proof for s ≥ 1 in [2].)
Assume that σ ∈ Gs is in the kernel of the map, so that σ(πK) ≡ πK (modπs+1

K ).
Let K ′ be a maximal unramified subextension of K. Then the residue field k′

is same as k because k/Fp is separable. This means that we have a surjective
map OK′ � k, so that any α ∈ OK satisfies α ≡ c0 + c1πK (modπ2

K) for some
c0, c1 ∈ OK′ . Then

σ(α) ≡ σ(c0) + σ(c1)σ(πK) ≡ c0 + c1πK ≡ α (modπ2
K)

since K ′ = KG0 . This proves σ ∈ G1.
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Corollary 2. Any finite Galois extension of Qp are solvable.

Proof. The quotient U
(s)
K /U

(s+1)
K is clearly an abelian group for any s ≥ 0. In

fact, it is not hard to show that

U
(s)
K /U

(s+1)
K '

{
k× s = 0

k s ≥ 1

where k is the residue field of K. By the previous proposition, every quotient
Gs/Gs+1 is abelian, and the above filtration proves that G is a solvable group.

In general, it is hard to find generators of a ring of integer of a number field.
It is known that there are some number fields which has a ring of integer that
is not monogenic, i.e. not of the form Z[α] for some α ∈ OK . For example,
Dedekind found that a cubic field K/Q generated by a root of the polynomial
x3 − x2 − 2x− 8 is not monogenic. Also, Q(

√
7,
√

10) is another example - see
Chapter 2, Exercise 30 of [5]. However, for local fields, we can show that every
ring of integers are monogenic.

Theorem 7. Every ring of integer of finite extension K of Qp is monogenic,
i.e. OK = Zp[α] for some α ∈ OK .

Proof. Let k be a residue field of K, which is a finite extension of Fp. Then there
exists α ∈ Fp s.t. k = Fp(ᾱ). Now let f̄(x) ∈ Fp[x] be a minimal polynomial of
ᾱ and let f(x) = OK [x] be a lift.

Lemma 6. There exists a lift α ∈ OK of ᾱ such that π = f(α) is a uniformizer
of K.

Proof. Let vK be a normalized valuation on K. From f̄(ᾱ) = 0, we have
vK(f(α)) ≥ 0 for any lift α. If vK(α) = 1, then we are done. So let’s assume
vK(α) ≥ 2. Then α+ πK will work: indeed, by Taylor’s formula we have

f(α+ πK) = f(α) + f ′(α)πK + bπ2
K , b ∈ OK

and we get vL(f(α+ πK)) = 1 since f ′(α) ∈ O×K , because f̄ ′(ᾱ) 6= 0.

From this, one can prove that

αjπi, 0 ≤ i ≤ e− 1, 0 ≤ j ≤ f − 1

form an integral basis of OK over Zp. Hence OK = Zp[α].
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5 Monsky’s theorem

At last, we introduce some amazing application of p-adic numbers, which seems
to be nothing to do with p-adic numbers.

Theorem 8 (Monsky). If we dissect a square into n triangles with all the same
areas, then n is even.

Proof. This proof requires Axiom of Choice. By using Zorn’s lemma, we can
prove that any two different extensions of a same field which are algebraically
closed and have the same cardinality are isomorphic as a field. This implies
that there is a field isomorphism ip : C → Cp, and we can extend the p-adic
valuation to C by |x|p := |ip(x)|p.

Now we can color points on a real plane R2 equipped with a 2-adic norm

via R ↪→ C i2−→ C2. Color a point (x, y) red if |x|2 < 1, |y|2 < 1, color it
blue if |x|2 ≤ |y|2 and |y|2 ≥ 1, and color it green if |x|2 > |y|2 and |x|2 ≥ 1.
Then each edge can only contain at most two colors. By Sperner’s lemma, we
can find a complete triangle where all the vertices have different colors. Let
(xr, yr), (xb, yb), (xg, yg) be the coordinates of the complete triangle with red,
blue, and green colors. The area A of the triangle is the absolute value of

(xg − xr)(yb − yr)− (xb − xr)(yg − yr)
2

.

By definition of the coloring, we have

|(xb − xr)(yg − yr)|2 = |xbyg|2 ≥ 1,

|xb|2 ≥ max{|yb|2, |yr|2},
|yg|2 > max{|xg|2, |xr|2}

and so we have
|A| = |1/2||xb||yg| ≥ 2.

By the way, the area is A = 1/n, so we get |n| ≤ 1/2 and n is even.
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