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We are going to prove the following well-known result:

Theorem 1. Let p be a prime and n ≥ 1 be an integer. Then

(Z/pnZ)× '


Z/pn−1(p− 1)Z p > 2

Z/2Z× Z/2n−2Z p = 2, n ≥ 2

1 p = 2, n = 1

In other words, unit group of a ring Z/pnZ is cyclic for odd prime p and
product of two cyclic groups for p = 2. There are some elementary proofs of
this, but they are all complicated. Here we introduce p-adic proof of this.

First, we’ll deal with odd prime p, since p = 2 case needs more concern.

Proposition 1. For an odd prime p, we have

Z×p ' Z/(p− 1)Z× Zp

Proof. Consider the following exact sequence of abelian groups

1→ 1 + pZp → Z×p
mod p−−−−→ (Z/pZ)× → 1.

Surprisingly, there exists a section ω : F×p → Z×p of mod p map, which is called
the Teichmüller character. This map is defined as

ω(x) := lim
n→∞

xpn

,

which converges. (This can be regarded as a unique solution of ω(x)p = ω(x)
that is congruent to x mod p.) Hence the sequence splits and we have

Z×p ' (Z/pZ)× × (1 + pZp) ' Z/(p− 1)Z× (1 + pZp)

since (Z/pZ)× is cyclic. To prove (1 + pZp,×) ' (Zp,+), we use the logarithm
map, defined as a power series. For x ∈ pZp, the series

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·
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converges and satisfies log((1 + x)(1 + y)) = log(1 + x) + log(1 + y). One can
show that this gives an isomorphism between 1 + pZp and pZp, and the inverse
map corresponds to an exponential map

exp : pZp → 1 + pZp, z 7→ 1 + z +
z2

2!
+

z3

3!
· · · .

Hence we have an isomorphism

(1 + pZp,×)→ (Zp,+), 1 + x 7→ 1

p
log(1 + x) =

1

p

(
x− x2

2
+

x3

3
− · · ·

)
.

Note that by unfolding all of these, the resulting isomorphism Z/(p−1)Z×Zp →
Z×p can be written as

(m, z) 7→ ω(gmp ) exp(pz) = ω(gp)m exp(pz)

where gp is a generator of the cyclic group (Z/pZ)×.

Now we can prove our theorem for the odd prime case. Consider the following
diagram:

1 1 + pZp Z×p (Z/pZ)× 1

1 U (Z/pnZ)× (Z/pZ)× 1

mod pn

mod p

mod pn
ω

mod p

ω mod pn

where
U = {a ≡ 1 (mod p)} ⊂ (Z/pnZ)×.

This is a commutative diagram and the first row is exact, and it is easy to check
that second row is also exact. Hence (Z/pn)× ' U × (Z/pZ)×. Since U and
(Z/pZ)× have coprime orders, we only need to check that U is a cyclic group.

We’ve already showed that (Zp,+) ' (1 + pZp,×), and Z is a cyclic dense
subgroup of Zp. Now we have a following diagram

Z ↪→ Zp ' 1 + pZp → U

where the last map is a mod pn reduction map. All of these maps are continuous
when we endow U with a discrete topology. Hence the image of Z under this
map is a dense subgroup of U , so is U itself. In other words, the image of 1,
exp(p), is a generator of U .

By combining all of these maps, we can compute a generator of the cyclic
group (Z/pnZ)×:

gp,n = ω(gp) exp(p) mod pn

is a generator of (Z/pnZ)×.

2



For example, let p = 5 and n = 4. Then (Z/5Z)× = 〈2〉. We have

ω(2) = lim
n→∞

25
n

≡ 25
4

(mod 54)

≡ 182 (mod 54)

and

exp(5) = 1 + 5 +
52

2
+

53

6
+ · · ·

≡ 1 + 5− 2 · 52 · (1 + 5 + 52 + · · · ) + 53 · (1− 5 + 52 − · · · ) (mod 54)

≡ 1 + 5− 2 · 52 + 3 · 53 (mod 54)

≡ 71 (mod 54)

Hence
182 · 71 ≡ 422 (mod 54)

is a generator of (Z/54Z)×.
In case of p = 2, exponential function doesn’t converges on 2Z2 ⊂ Z2, so we

have to study more carefully. We have the following:

Proposition 2.
Z×2 ' Z/2Z× Z2

Proof. Consider the following exact sequence of abelian groups

1→ 1 + 4Z2 → Z×2
mod 4−−−−→ (Z/4Z)× → 1.

This exact sequence splits since there exists a section (Z/4Z)× → Z×2 defined
as 3 7→ −1. Hence we have

Z×2 ' (Z/4Z)× × (1 + 4Z2) ' Z/2Z× (1 + 4Z2).

Now, as before, logarithm and exponential maps give isomorphism between
(1 + 4Z2,×) and (Z2,+). We have

(1 + 4Z2,×) ' (Z2,+), 1 + x 7→ 1

4
log(1 + x) =

1

4

(
x− x2

2
+

x3

3
− · · ·

)
with an inverse

(Z2,+) ' (1 + 4Z2,×), z 7→ exp(4z) = 1 + 4z +
(4z)2

2!
+

(4z)3

3!
+ · · ·

Now we can prove our theorem for p = 2. Assume that n > 1. Consider the
following diagram:
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1 1 + 4Z2 Z×2 (Z/4Z)× 1

1 U (Z/2nZ)× (Z/4Z)× 1

mod 2n

mod 4

mod 2n
ω

mod 4

ω mod 2n

where
U = {a ≡ 1 (mod 4)} ⊂ (Z/2nZ)×.

As before, the diagram commutes and both rows are split exact. By the same
argument as p > 2, U is a cyclic group and we have

(Z/2nZ)× ' (Z/4Z)× × U ' Z/2Z× Z/2n−2Z.

Hence (Z/2nZ)× has index 2 cyclic subgroup, which is generated by exp(4).
For example, if n = 6, then

exp(4) = 1 + 4 +
42

2
+

43

6
+

44

24
+

45

120
+ · · ·

≡ 1 + 22 + 23 + 25 · (1− 2 + 22 − · · · ) + 25 · (1− 2 + 22 − · · · ) (mod 26)

≡ 1 + 22 + 23 + 2 · 25 (mod 26)

≡ 13 (mod 26)

so 13 is an element of (Z/26Z)× of order 16 = 24, and (Z/26Z)× is generated
by 13 and −1.
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