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Abstract

We consider a natural problem concerning Fourier transforms. In one

variable, one seeks functions 𝑓 and �̂� , both positive for |𝑥 | ≥ 𝑎 and vanishing

at 0. What is the lowest bound for 𝑎? In higher dimension, the same problem

can be posed by replacing the interval by the ball of radius 𝑎. We show that

there is indeed a strictly positive lower bound, which is estimated as a

function of the dimension. In the last section the question, and its solution,

are shown to be naturally related to the theory of zeta functions.

Introduction

Heisenberg’s inequalities are expressed, in terms of the notations of the present

article, as ∫
𝑥2 | 𝑓 (𝑥)|2d𝑥

∫
𝑦2 | �̂� (𝑦)|2d𝑦 ≥ 1

16𝜋2

(if 𝑓 has norm 1), and they are optimal, since the equality holds for 𝑓 (𝑥) = 𝑒−𝜋𝑥
2

.

In the following form

Δ𝑝Δ𝑥 ≥ ℏ

they are interpreted by physicists as a relationship between the standard devi-

ation of position and momentum of an object; when these relations appeared,

*
seewoo5@berkeley.edu. Most of the translation is due to Google Translator, and I only fixed

a little.

1



Statement of the problem and lower bound of 𝐵1

they are called as "uncertainty relations", since it is a question about determining

the position and the momentum of a point mass precisely. For mathematicians,

it is about a simple observation, but with different aspects: for a Foutier trans-

form pair of functions, one cannot make both to be concentrated near 0. This

common but important fact is called Heisenberg’s principle.

In this article, we introduce an another problem about positivity of functions

outside a neighborhood of zero. This would not give anything new if we do

not impose a new condition, for both functions, to be negative at zero. Can

the neighborhoods of zero where the functions are positive outside of those be

arbitrarily small? We will see that the answer is negative.

The problem, and the first answers for higher dimensions, comes from num-

ber theory, more precisely from Tate’s theory of zeta functions of number fields.

The functional equation of adélic zeta functions poses the problem in the most

natural way, as we show in §4 of this article; however, it is already implicitly

proposed in the classical article of Landau [2]. But the classical Fourier anal-

ysis gives the best results, as shown in the first three sections. The results are

about lower and upper bounds of natural constants associated to the problem,

denoted as 𝐵𝑑 and ℬ𝑑 in terms of the dimension 𝑑. They are far from being

optimal. Section 1 and 2 treats upper and lower bounds for 𝑑 = 1; section 3 for

𝑑 ≥ 2.

Finally, the section 4, Arithmetic, using Tate’s method, relates this problem

to the study of real zeros of zeta functions in relation to the discriminant. The

arithmetic argument shows that the linear growth of 𝐵𝑑 as a function in the

dimension is natural in view of known ramification properties of these fields.

1 Statement of the problem and lower bound of 𝐵1

Consider a pair of functions ( 𝑓 , �̂� ) on the real line: it is a Fourier pair if{
�̂� (𝑦) =

∫
𝑓 (𝑥)𝑒−2𝑖𝜋𝑥𝑦

d𝑥, 𝑓 ∈ 𝐿1(R)
𝑓 (𝑥) =

∫
�̂� (𝑦)𝑒2𝑖𝜋𝑥𝑦

d𝑦, �̂� ∈ 𝐿1(R).

So 𝑓 and �̂� are continuous and converges to 0 at infinity. We are interested in

the Fourier pairs ( 𝑓 , �̂� ) such that

1. 𝑓 and �̂� are real-valued, even, and not identically zero,

2. 𝑓 (0) ≤ 0 and �̂� (0) ≤ 0,
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Statement of the problem and lower bound of 𝐵1

3. 𝑓 (𝑥) ≥ 0 for 𝑥 ≥ 𝑎 𝑓 and �̂� (𝑦) ≥ 0 for 𝑦 ≥ 𝑎
�̂�
.

Note that the condition 2 and the non-vanishing assumptions on 𝑓 and �̂� imply

𝑎 𝑓 and 𝑎
�̂�
> 0.

Problem. What is the infimum of the product 𝑎 𝑓 𝑎 �̂�
for the Fourier pairs ( 𝑓 , �̂� )

satisfying 1–3?

We denote the infimum as 𝐵1 ≥ 0 (note that the pair attaining infimum clearly

exists). We will show, which is not obvious a priori, that 𝐵1 is strictly positive.

Until section 3, we will focus on dimension 1. For a Fourier pair ( 𝑓 , �̂� )
satisfying 1–3 let

𝐴( 𝑓 ) = inf{𝑥 > 0 : 𝑓 ((𝑥,∞)) ⊂ R+}
𝐴( �̂� ) = inf{𝑦 > 0 : �̂� ((𝑡 ,∞)) ⊂ R+}.

The product 𝐴( 𝑓 )𝐴( �̂� ) is invariant under scaling, i.e. replacing 𝑓 (𝑥), �̂� (𝑦) by

𝑓 (𝑥/𝜆), 𝜆 �̂� (𝜆𝑦), 𝜆 > 0. Since

𝐵1 = inf𝐴( 𝑓 )𝐴( �̂� )

for all Fourier pairs satisfying 1–3, we limit ourselves to those which𝐴( 𝑓 ) = 𝐴( �̂� ).
Then 𝑓 + �̂� ≠ 0 (consider their values at points near 𝐴( 𝑓 ) and greater than it),

and

𝐴( 𝑓 + �̂� ) ≤ 𝐴( 𝑓 ) = 𝐴( �̂� ).
So 𝐵1 = inf𝐴2( 𝑓 + �̂� ). Hence we see that

𝐵1 = 𝐴2, 𝐴 = inf𝐴( 𝑓 )

where the infimum is taken over all functions 𝑓 ∈ 𝐿1(R), real-valued and even,

not identically zero, equal to their own Fourier transforms, and 𝑓 (0) < 0.

Let

𝛾(𝑥) = 𝑒−𝜋𝑥
2

so that 𝛾 = �̂�. If 𝑓 (0) < 0, 𝑓 − 𝑓 (0)𝛾 satisfies the same conditions as 𝑓 , and

𝐴( 𝑓 − 𝑓 (0)𝛾) ≤ 𝐴( 𝑓 ).

As a result,

𝐴 = inf𝐴( 𝑓 ) (1.1)

where the infimum is taken over all 𝑓 ∈ 𝐿1(R), real-valued, even, not identi-
cally zero, 𝑓 = �̂� , and 𝑓 (0) = 0.

Here is an important result.

3



Statement of the problem and lower bound of 𝐵1

Theorem 1.1. Let 𝜆 = − inf

(
sin 𝑥
𝑥

)
= 0.2712 · · · . Then

𝐴 ≥ 1

2(1 + 𝜆) = 0.4107 · · ·

and so

𝐵 ≥ 0.1687 · · · .

Proof. Choose 𝑓 = �̂� , 𝑓 (0) = 0, and

∫
R
| 𝑓 (𝑥)|d𝑥 :=

∫
R
| 𝑓 | = 1. Write 𝐴 = 𝐴( 𝑓 ).

Put 𝑓 = 𝑓 + − 𝑓 −, | 𝑓 | = 𝑓 + + 𝑓 −. Since

∫
R
𝑓 = �̂� (0) = 0, we have

∫
R
𝑓 + =

∫
R
𝑓 − =∫ 𝐴

−𝐴 𝑓 − = 1

2
. So

∫ 𝐴

−𝐴 | 𝑓 | ≥ 1

2
. From | 𝑓 (𝑥)| ≤

∫
| �̂� | = 1, 2𝐴 ≥ 1

2
and we obtain

the first bound 𝐴 ≥ 1

4
. We will see that this argument generalizes to higher

dimensions.

In dimension 1, we can refine it in the following way. From 𝑓 = �̂� ,

𝑓 (𝑥) =
∫

𝑓 (𝑦) cos 2𝜋𝑦𝑥d𝑦 =

∫
𝑓 (𝑦)(cos 2𝜋𝑦𝑥 − 1)d𝑦

=

∫
𝑓 −(𝑦)(1 − cos 2𝜋𝑦𝑥)d𝑦 −

∫
𝑓 +(𝑦)(cos 2𝜋𝑦𝑥 − 1)d𝑦.

This implies, both integrals being positive,

𝑓 −(𝑥) ≤
∫

𝑓 +(𝑦)(1 − cos 2𝜋𝑦𝑥)d𝑦

and

1

4

=

∫ 𝐴

0

𝑓 − ≤
∫ ∞

0

𝑓 +(𝑦)
(
𝐴 −

sin 2𝜋𝑦𝐴

2𝜋𝑦

)
d𝑦

so

1

4

≤ 𝐴

2

sup

𝑢∈R

(
1 − sin 𝑢

𝑢

)
=

𝐴

2

(1 + 𝜆)

and we obtain the theorem. □

Later, we will need to consider functions that are regular enough. A natural

class is the Schwartz space 𝒮. It is not obvious that the infimum 𝐴 defined by

(1.1), taken only over the functions in 𝒮, coincides with that over all 𝑓 ∈ 𝐿1(R).
Let ℬ1 be 𝐴2

, where 𝐴 is defined by (1.1) for 𝑓 ∈ 𝒮. We will see that 𝐵1 and

ℬ1 are not much different. Clearly, we have

𝐵1 ≤ ℬ1. (1.2)

Let

𝐵−
1
= inf{𝐴2

: 𝑓 (0) < 0, 𝑓 = �̂� even ≠ 0, 𝑓 ∈ 𝐿1(R)}.
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Statement of the problem and lower bound of 𝐵1

Hence 𝐵−
1

is defined by (1.1), where we impose 𝑓 (0) < 0. Define ℬ−
1

similarly for

𝑓 ∈ 𝒮. Clearly,

𝐵−
1
≤ ℬ−

1
(1.3)

ℬ1 ≤ ℬ−
1
, 𝐵1 ≤ 𝐵−

1
. (1.4)

To prove ℬ−
1
≤ 𝐵−

1
, let 𝑓 ∈ 𝐿1(R) be a function satisfying the conditions for (1.1)

but 𝑓 (0) < 0, and let 𝑎 = 𝐴( 𝑓 ). Let 𝜑 = 𝜓 ∗𝜓, where 𝜓 is 𝐶∞
, even, positive, and

compactly supported near 0, and 𝑔 = 𝑓 ∗ 𝜑. Then 𝐴(𝑔) ≤ 𝑎 + 𝜀 and 𝑔(0) < 0. We

have �̂� = �̂�𝜓2
; by applying the same operation on �̂� we obtain a function ℎ ∈ 𝒮

such that ℎ = ℎ̂, ℎ(0) < 0, and 𝐴(ℎ) ≤ 𝑎 + 𝜀; from this we get ℬ−
1
≤ 𝐵−

1
and

ℬ−
1
= 𝐵−

1
. (1.5)

Note that the argument fails when 𝑓 (0) = 0. We will show

𝐵−
1
≤ 2𝐵1; (1.6)

combining (1.4) and (1.6) gives

𝐵1 ≤ ℬ1 ≤ 2𝐵1. (1.7)

Let 𝑓 be a function satisfying the conditions for (1.1) and 𝑎 = 𝐴( 𝑓 ). Since

�̂� (0) =
∫

𝑓 (𝑥)d𝑥 = 0, 𝑓 takes a negative value on [−𝑎, 𝑎]. Let 𝑏 > 0 be such a

number, and consider the distribution

𝑇 = 𝛿𝑏 + 𝛿−𝑏 + 2𝛿0.

It is a positive measure with nonnegative Fourier transform

𝑇 = 2 cos(2𝜋𝑏𝑦) + 2 ≥ 0.

We have

(𝑇 ∗ 𝑓 )(0) = 𝑓 (𝑏) + 𝑓 (−𝑏) < 0.

Since 𝑏 < 𝑎, 𝑔 = 𝑇 ∗ 𝑓 satisfies

𝑔(0) < 0, 𝑔 ≥ 0 on (2𝑎,∞).

Moreover �̂� = 𝑇 �̂� is nonnegative on [0,∞), and �̂�(0) = 0. By scaling, we obtain

a function ℎ such that

ℎ ≥ 0 on [𝑎
√

2,∞), ℎ(0) < 0

ℎ̂ ≥ 0 on [𝑎
√

2,∞), ℎ̂(0) = 0.

The functions ℎ and ℎ̂ are real-valued and even. Hence ℎ+ℎ̂ satisfy the conditions

defining 𝐵−
1
. So 𝐵−

1
≤ (𝑎

√
2)2 = 2𝑎2

; by varying 𝑓 , we obtain (1.6).
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2 Upper bound of 𝐵1

A first idea is to associate 𝑓 with the Hermite series

𝑓 (𝑥) ∼
∞∑
𝑛=0

𝑎𝑛ℎ𝑛(𝑥)

where ℎ𝑛 are eigenvectors of the Fourier transform ℱ corresponding to the

eigenvalues 𝑖𝑛 . Since 𝑓 = �̂� the expression becomes

𝑓 (𝑥) ∼
∞∑

𝑚=0

𝑎4𝑚ℎ4𝑚(𝑥).

Each ℎ𝑛 has a form of ℎ𝑛 = 𝑒−𝜋𝑥
2

𝑃𝑛(𝑥) where 𝑃𝑛 is a polynomial of degree 𝑛. A

suitable linear combination of ℎ0 and ℎ4 (satisfying 𝑓 (0) = 0) gives 𝜋𝐴2 ≤ 3. The

calculations seem difficult and we will not proceed in this direction further.

We can also consider the functions

𝑔𝑎(𝑥) = 𝑎𝛾(𝑎𝑥) + 𝛾
( 𝑥
𝑎

)
− (1 + 𝑎)𝛾(𝑥), 𝑎 > 1 (2.1)

which satisfy the requirements for (1.1). Then any expression of the form∫ ∞

1

𝑔𝑎(𝑥)d𝜏(𝑎) (2.2)

where 𝜏 is a measure on [1,∞) such that the integral converges absolutely and

≥ 0 at infinity is our candidate (it seems difficult to characterize such measures

where (2.2) converges absolutely and positive at infinity).

We first study 𝐴(𝑔𝑎). It is convenient to put 𝑋 = 𝜋𝑥2
, and 𝐺𝑎(𝑋) = 𝑔𝑎(𝑥), so

𝐺𝑎(𝑋) = 𝑎𝑒−𝑎
2𝑋 + 𝑒−𝑎

−2𝑋 − (1 + 𝑎)𝑒−𝑋 .

The function

𝐻𝑎(𝑋) = 𝑒𝑋𝐺𝑎(𝑋) = 𝑎𝑒(1−𝑎
2)𝑋 + 𝑒(1−𝑎

−2)𝑋 − 1 − 𝑎 (2.3)

is convex and satisfies

𝐻𝑎(0) = 0, 𝐻′
𝑎(0) = −𝑎2(𝑎2 − 1)(𝑎3 − 1) < 0

and tends to +∞ as 𝑋 → ±∞. So it has a unique zero 𝑋𝑎 > 0, and

𝐴(𝑔𝑎) =
√

𝑋𝑎

𝜋
.
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Upper bound of 𝐵1

It is natural to study how 𝑋𝑎 varies, and we first consider those for 𝑎 close to 1.

Put 𝑎 = 1 + ℎ, ℎ > 0, then for fixed 𝑋 it can be written as

𝐻𝑎(𝑋) = (1 + ℎ)(𝑒−𝑋(2ℎ+ℎ2) − 1) + 𝑒𝑋(2ℎ−3ℎ2+3ℎ3−4ℎ4)𝑋 − 1

modulo 𝑂(ℎ5). It can be written as 𝑃1ℎ + 𝑃2ℎ
2 + 𝑃3ℎ

3 + 𝑃4ℎ
4 +𝑂(ℎ5), where the

polynomials 𝑃𝑖 are

𝑃1 = 0

𝑃2 = 2𝑋(2𝑋 − 3)
𝑃3 = −𝑋(2𝑋 − 3)

𝑃4 = −5𝑋 + 15𝑋2 − 28

3

𝑋3 + 4

3

𝑋4.

From the expression of 𝑃2, for sufficiently small ℎ, 𝐻𝑎(𝑋) > 0 if 𝑋 > 3

2
and

𝐻𝑎(𝑋) < 0 if 𝑋 < 3

2
. As a result,

lim

𝑎→1
+
𝑋𝑎 =

3

2

. (2.4)

which gives an explicit bound

𝐴 ≤
√

3

2𝜋
. (2.5)

But this simple bound cannot be the true value of 𝐴. For 𝑋 = 3

2
, 𝑃2 and 𝑃3

cancel out, and

𝑃4

(
3

2

)
=

3

2

.

For nonzero small ℎ, we therefore have 𝑋𝑎 < 3

2
.

If 𝑎 → +∞, 𝑋𝑎 → +∞; in fact, a simple calculation shows that

𝑋𝑎 = log 𝑎 + 𝑂(1) (𝑎 → +∞).

We have not determined the minimum value of 𝑋𝑎 , but it is easy to estimate it

semi-heuristically. The value 𝑎 =
√

2 satisfies, for 𝑞 = 𝑒
1

2
𝑋𝑎

,

𝑞3 − (1 +
√

2)𝑞2 +
√

2 = 0;

if 𝑞 ≠ 1, it becomes the quadratic equation

𝑞2 −
√

2𝑞 −
√

2 = 0
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with a zero 𝑞 =

√
2

2
(1 +

√
1 + 2

√
2),

𝑋𝑎 = 2 log 𝑞 = 1.4749 · · · < 3

2

(𝑎 =
√

2).

The value 𝑎 = 2 gives, for 𝑞 = 𝑒
3

4
𝑋

,

𝑞4 − 2

𝑞4 − 1

𝑞 − 1

= 0.

The unique zero 𝑞 > 1 is 𝑞 = 2.9744 · · · , from where

𝑋𝑎 = 1.4534 · · · (𝑎 = 2).

It seems that we can approximate the optimal value by this method. Indeed, if

we solve 𝐻𝑎(𝑋) = 0 for 𝐻𝑎 given by (2.3), and if we assume 𝑎 ≥ 2, the first term

is negligible. So 𝑋𝑎 is approximately

log(1 + 𝑎)
1 − 𝑎−2

.

The extremal value of this expression is attained when 𝑎(1 − 𝑎) = 2 log(1 + 𝑎),
which gives

𝑎 = 2.08137 · · · .

In all cases, the minimum value of 𝐴(𝑔𝑎) we obtain is not the optimum of

(1.1) that we are looking for. Consider 𝑎0 such that 𝑋0 = 𝑋𝑎0
is minimal, and

𝐻0 = 𝐻𝑎0
is positive on [𝑋𝑎 ,∞). Let 𝑎 be a number (for example, near 1) such

that 𝑋𝑎 > 𝑋0. On [𝑋𝑎 ,∞), 𝐻𝑎 ≥ 0 and its order of growth as 𝑋 → +∞, 𝑒(1−𝑎
−2)𝑋

,

is smaller than that of 𝐻𝑎0
if 𝑎 < 𝑎0. So there exists 𝑇 > 0 such that 𝐻𝑎0

− 𝑇𝐻𝑎

is ≥ 0 on [𝑋𝑎 ,∞). But this function is positive on [𝑋0, 𝑋𝑎), so is for 𝑋 ≥ 𝑋′
with

𝑋′ < 𝑋0.

The same argument holds for all 𝑎0 with 𝑋0 < 3

2
. For 𝑎0 = 2, we can determin

the optimal value (corresponds to 𝑎 very close to 1), giving a function ≥ 0 on

[𝑋′′,∞) where

𝑋′′ = 1.25 · · ·
𝐴 ≤ 0.63 · · · .

(2.6)

We only made a very rough calculation. Nevertheless we state the result, to

compare with Theorem 1.1.

Theorem 2.1. We have 𝐴 ≤ 0.64 · · · and 𝐵1 ≤ 0.41 · · · .
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3 Higher dimensions

On Euclidean space R𝑑
with inner product

𝑥 · 𝑦 =

𝑑∑
𝑖=1

𝑥𝑖𝑦𝑖 , ∥𝑥∥ = (𝑥 · 𝑥)1/2,

Fourier transform is defined by

�̂� (𝑦) =
∫

𝑓 (𝑥)𝑒−2𝑖𝜋𝑥·𝑦
d𝑥 (3.1)

where d𝑥 = d𝑥1 · · ·d𝑥𝑑 is the Lebesgue measure; so

𝑓 (𝑥) =
∫

�̂� (𝑦)𝑒2𝑖𝜋𝑥·𝑦
d𝑦. (3.2)

We suppose that 𝑓 and �̂� are continuous and integrable. More generally, if 𝐸 is

a Euclidean space of dimension 𝑑, if the invariant measure d𝑥 on 𝐸 is chosen so

that the cube formed by the orthonormal basis has measure 1, and if 𝑥 · 𝑦 is the

inner product, Fourier transform and its inverse are defined by (3.1) and (3.3).

Consider the Fourier pairs ( 𝑓 , �̂� ) satisfying

1. 𝑓 , �̂� are not identically zero,

2. 𝑓 (0) ≤ 0 and �̂� (0) ≤ 0, (3.3)

3. 𝑓 (𝑥) ≥ 0 for ∥𝑥∥ ≥ 𝑎 𝑓 , �̂� (0) ≥ 0 for ∥𝑦∥ ≥ 𝑎
�̂�
.

Define 𝐴( 𝑓 ) and 𝐴( �̂� ) as in §1:

𝐴( 𝑓 ) = inf{𝑟 > 0 : 𝑓 (𝑥) ≥ 0 if ∥𝑥∥ > 𝑟},

and

𝐵𝑑 = inf𝐴( 𝑓 )𝐴( �̂� )

for pairs satisfying 1–3. Let 𝑓 ♯(𝑥) be the (invariant) integral of 𝑓 on the sphere

of radius ∥𝑥∥: �̂� ♯ = ( �̂� )♯ and 𝑓 ♯ and �̂� ♯ are nonzero; otherwise 𝑓 and �̂� are

compactly supported from 3. Since 𝐴( 𝑓 ♯) ≤ 𝐴( 𝑓 ) and 𝐴( �̂� ♯) ≤ 𝐴( �̂� ), we can limit

ourselves to the radial functions. Since

( 𝑓 (𝑥/𝜆))∧ = 𝜆𝑑 �̂� (𝜆𝑦) (𝜆 > 0),

we can follow the argument in §1 and we have

𝐵𝑑 = 𝐴2, 𝐴 = inf𝐴( 𝑓 ) (3.4)
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where the infimum is taken over the functions 𝑓 ∈ 𝐿1(R𝑑), radial, not identi-
cally zero, such that 𝑓 = �̂� and 𝑓 (0) = 0.

We can, as in §1, if necessary, add a multiple of the following radial and

self-dual function

𝛾(𝑥) = 𝑒−𝜋∥𝑥∥
2

.

Theorem 3.1. We have

𝐵𝑑 ≥ 1

𝜋

(
1

2

Γ

(
𝑑

2

+ 1

))
2/𝑑

>
𝑑

2𝜋𝑒
.

Proof. Follow the argument of the case 𝑑 = 1, where we replace the interval

(−𝐴( 𝑓 ), 𝐴( 𝑓 )) with the ball of radius 𝐴( 𝑓 ) centered at the origin, whose volume

(≥ 1

2
) is

1

Γ( 𝑑
2
+1)(𝐴( 𝑓 ))

𝑑𝜋𝑑/2
. □

Put 𝑋 = 𝜋∥𝑥∥2
, the argument in §2 natually leads us to consider the functions

𝑔𝑎(𝑥) = 𝐺𝑎(𝑋) (𝑥 ∈ R𝑑)

where

𝐺𝑎(𝑋) = 𝑎𝑑𝑒−𝑋𝑎2 + 𝑒−𝑋𝑎2 − (1 + 𝑎𝑑)𝑒−𝑋 ,

and set

𝐻𝑎(𝑋) = 𝑎𝑑𝑒(1−𝑎
2)𝑋 + 𝑒(1−𝑎

−2)𝑋 − (1 + 𝑎𝑑), 𝑎 > 1.

It is convenient to define 𝑎2 = 1 + 𝑘, 𝑑 = 2𝑐, which gives

𝐻𝑎(𝑋) = (1 + 𝑘)𝑐𝑒−𝑘𝑋 + 𝑒(1−(1+𝑘)
−1)𝑋 − 1 − (1 + 𝑘)𝑐 .

The derivative in 𝑋 at the origin is

𝑘

1 + 𝑘

(
1 − (1 + 𝑘)𝑐+1

)
< 0;

the convexity argument in §2 shows that 𝐻𝑎 has a unique positive zero 𝑋𝑎 . As

before, we compute the expansion of 𝐻𝑎(𝑋) in 𝑘 up to order 4. It becomes

𝐻𝑎(𝑋) = 𝑃1𝑘 + 𝑃2𝑘
2 + 𝑃3𝑘

3 + 𝑃4𝑘
4 + 𝑂(𝑘5)

where

𝑃1 = 0

𝑃2 = 𝑋(𝑋 − 𝑐 − 1)

𝑃3 =
1

2

(𝑐 − 2)𝑋(𝑋 − 𝑐 − 1)

10
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𝑃4 =
1

12

𝑋(𝑋3 − (2𝑐 + 6)𝑋2 + (3𝑐(𝑐 − 1) + 18)𝑋 − (2𝑐(𝑐 − 1)(𝑐 − 2) + 12)).

As in the dimension 1 case, we see that 𝑃2 and 𝑃3 cancel out for

𝑋 = 𝑋(𝑑) :=
𝑑

2

+ 1. (3.5)

Moreover, 𝑃2 > 0 for 𝑋 > 𝑋(𝑑), < 0 for 𝑋 < 𝑋(𝑑). Taking the limit 𝑘 → 0 gives

lim

𝑎→1

𝑋𝑎 =
𝑑

2

+ 1.

To understand the location of 𝑋𝑎 with respect to 𝑋(𝑑) as 𝑎 → 1, we compute

𝑄4(𝑋(𝑑)) or 𝑃4 = 𝑋
12
𝑄4. Calculation gives

𝑄4(𝑐 + 1) = −𝑐2 + 1.

For 𝑑 > 2, this term is < 0, so 𝐻𝑎(𝑋(𝑑)) < 0 for 𝑎 close to 1, which shows that

𝑋𝑎 >
𝑑

2

+ 1 (𝑎 > 1, close to 1).

Therefore it is possible that the value (3.5) is optimal. This is not the case when

𝑑 = 1 as we saw in §2.

For 𝑑 = 2, 𝑄4(𝑐 + 1) = 0, so we need to compute up to degree 5, where

𝐻𝑎(2) = (1 + 𝑘)𝑒−2𝑘 + 𝑒2(1− 1

1+𝑘 ) − 2 − 𝑘. (3.6)

The Taylor series at 0 of

𝑓 (𝑧) = 𝑒2(1− 1

1+𝑧 ) = 𝑒2
𝑧

1+𝑧 ,

𝑓 (𝑧) =
∞∑
𝑛=0

𝑞𝑛𝑧
𝑛 ,

can be calculated by the residue theorem. Let

𝑤 =
𝑧

1 + 𝑧
, 𝑧 =

𝑤

1 − 𝑤
, d𝑧 =

d𝑤

(1 − 𝑤)2 ,

by taking a small contour around 0:

𝑞𝑛 = Res𝑧=0

𝑓 (𝑧)
𝑧𝑛+1

=
1

2𝑖𝜋

∮
𝑒

2𝑧
1+𝑧

d𝑧

𝑧𝑛+1

=
1

2𝑖𝜋

∮
𝑒2𝑤 (1 − 𝑤)𝑛+1

𝑤𝑛+1

d𝑤

(1 − 𝑤)2

= Res𝑤=0

(1 − 𝑤)𝑛−1

𝑤𝑛+1

𝑒2𝑤 .

11
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In particular, 𝑞5 is the sum of

2
4

4!

− 2
5

5!

(3.7)

coming from the first term of (3.6), and the coefficient of 𝑤5
in 𝑒2𝑤(1−𝑤)4, equal

to

2
5

5!

− 4 · 2
4

4!

+ 6 · 2
3

3!

− 4 · 2
2

2!

+ 2. (3.8)

We find that 𝑞5 = 0.

Similarly, 𝑞6 is the sum of

−2
5

5!

+ 2
6

6!

(3.9)

and

2
6

6!

− 5 · 2
5

5!

+ 10 · 2
4

4!

− 10 · 2
3

3!

+ 5 · 2
2

2!

− 2, (3.10)

which is

𝑞6 = − 4

45

< 0.

When 𝑎 is sufficiently close to 1, we therefore have 𝐻𝑎(2) < 0 and 𝑋𝑎 > 𝑋(2) = 2.

Again, the bound given by (3.5) could be optimal.

To conclude this section, note that for all 𝑑 ≥ 2 we obtain the upper bound

𝐵𝑑 ≤ ℬ𝑑 ≤ 𝑑 + 2

2𝜋
(3.11)

where ℬ𝑑 is defined, as in §1, by the functions in the space 𝒮(R𝑑). Also following

the argument in the end of §1, relating the bounds for 𝐿1
and𝒮 applies. To prove

the inequality (1.6), we have to consider𝑇 = 𝛿𝑏+𝛿−𝑏+2𝛿0, where ∥𝑏∥ < 𝑎 = 𝐴( 𝑓 )
and 𝑓 (𝑏) < 0; 𝑇 = 2 cos(2𝜋𝑏 · 𝑦) + 2 is a positive plane wave. The rest of the

argument is the same, replacing ℎ + ℎ̂ with the spherical average of ℎ + ℎ̂ if we

want to stick to the radial functions. In conclusion, comparing with Theorem

3.1,

Theorem 3.2. We have

𝐵𝑑 ≤ ℬ𝑑 ≤ 𝑑 + 2

2𝜋
, 𝐵𝑑 ≥ 1

2

ℬ𝑑 . (3.12)

4 Arithmetic

Let 𝐹 be a number field of degree 𝑑 over Q. We denote as 𝑣 for the places of 𝐹

(finite or archimedean), and 𝐹𝑣 for the corresponding completion; for finite 𝑣,

12
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𝒪𝑣 ⊂ 𝐹𝑣 is the ring of integers of 𝐹𝑣 and 𝒪×
𝑣 is the group of unities; 𝑞𝑣 is the

cardinality of the residue field. Let

A𝐹 =
∏′

𝑣

𝐹𝑣

(restricted product) be the ring of adèles of 𝐹, and A×
𝐹
= 𝐼𝐹 the group of idèles.

Let 𝑥 : 𝐼𝐹 ↦→ ∏
𝑣 |𝑥 |𝑣 be the idèle norm,

𝐼1

𝐹 = {𝑥 ∈ 𝐼𝐹 : |𝑥 | = 1}
and 𝐼+𝐹 = {𝑥 ∈ 𝐼𝐹 : |𝑥 | ≥ 1}.

Consider the invariant measure d𝑥 =
∏

d𝑥𝑣 on A𝐹, where d𝑥𝑣 is Haar measure

on 𝐹𝑣 . At finite places, d𝑥𝑣 are self-dual measures of Tate [6]; at a real place, d𝑥𝑣

is the Lebesgue measure; at a complex place, if we write the variable 𝑧 = 𝑥 + 𝑖𝑦,

d𝑧 = 2d𝑥d𝑦. At a real place, the Fourier transform 𝑓 (𝑦) of a function 𝑓 is defined

as before.

If 𝑧 = 𝑥 + 𝑖𝑦 is a complex variable and 𝑤 = 𝜉 + 𝑖𝜂, Tate define the transfom

�̂� (𝑤) of a function 𝑓 (𝑧) by

�̂� (𝑤) =
∫

𝑓 (𝑧)𝑒−2𝑖𝜋Tr(𝑧𝑤)
d𝑧

where Tr(𝑧𝑤) = 2ℜ(𝑧𝑤) = 2(𝑥𝜉 − 𝑦𝜂).

For radial functions, in each of the variables, it coincides with the Fourier trans-

form defined in §3 with the inner product 𝑧 · 𝑤 = 2(𝑥𝜉 + 𝑦𝜂). The self-dual

measure d𝑧 of Tate is the normalized measure considered in the beginning of §3

for abstract Euclidean spaces.

Let 𝑓 be a function in the Schwartz space of A𝐹 given by

𝑓 (𝑥) =
∏
𝑣 |∞

𝑓𝑣(𝑥𝑣)
∏

𝑣 finite

𝑓 0

𝑣 (𝑥𝑣) (4.1)

where 𝑓 0

𝑣 is the characteristic function of 𝒪𝑣 and, for archimedean 𝑣, 𝑓𝑣 is for a

moment an arbitrary Schwartz function. Tate’s zeta function associated to 𝑓 is

defined for ℜ(𝑠) > 1 by

𝑍( 𝑓 , 𝑠) =
∫
𝐼𝐹

𝑓 (𝑥)|𝑥 |𝑠d×𝑥,

where d
×𝑥 is the product of d

×𝑥𝑣 =
d𝑥𝑣
|𝑥𝑣 | (multiplied by (1−𝑞−1

𝑣 )−1
at finite places).

13
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Rather than the factorizable functions in (4.1), we will consider the functions

of the form 𝑔𝑎(𝑥) (§3) on R𝑑
, where R𝑑

is regarded as an inner product space via

∥𝑥∞∥2 =
∑
𝑣 real

|𝑥𝑣 |2 +
∑

𝑣 complex

2∥𝑧𝑣 ∥2

where ∥𝑧∥ is the usual absolute value of a complex number (We denote |𝑧 | = ∥𝑧∥2

the normalized absolute norm as in Tate’s theory). More generally,

𝑓 (𝑥) = 𝑓∞(𝑥∞)
∏

𝑣 finite

𝑓 0

𝑣 (𝑥𝑣) (4.2)

where 𝑓∞(𝑥∞) ∈ 𝒮(R𝑑). The conditions imposed by Tate (i.e., (𝑧1), (𝑧2), (𝑧3) in [6,

§4.4]) are satisfied by these functions. For example, (𝑧3) says that the integral∫
𝐹∞

𝑓∞(𝑥∞)
∏
𝑣 |∞

|𝑥𝑣 |𝜎−1

𝑣 d𝑥

where 𝐹∞ =
∏

𝑣 |∞ 𝐹𝑣 , converges absolutely for 𝜎 > 1. In fact, it holds for 𝜎 > 0

and all 𝑓∞ ∈ 𝒮(𝐹∞). Hence the same condition holds for �̂� .

In the case where 𝑓∞ =
∏

𝑓 0

𝑣 with

𝑓 0

𝑣 (𝑥) = 𝑒−𝜋𝑥
2 (real variable)

𝑓 0

𝑣 (𝑥) = 𝑒−2𝜋∥𝑧∥2 (complex variable),

𝑍( 𝑓 , 𝑠) is the zeta function 𝜁𝐹(𝑠), multiplied by the usual archimedean factors

(product of Γ functions) and |𝐷−1/2

𝐹
|. Following Tate [6], we write

𝑍( 𝑓 , 𝑠) =
∫
𝐼+
𝐹

𝑓 (𝑥)|𝑥 |𝑠d×𝑥 +
∫
𝐼+
𝐹

�̂� (𝑥)|𝑥 |1−𝑠d×𝑥 + 𝜅
�̂� (0)
𝑠 − 1

− 𝜅
𝑓 (0)
𝑠

(4.3)

following the usual notations [6, Théorème 4.3.2],

𝜅 =
2
𝑟1(2𝜋)𝑟2ℎ𝑅√

|𝐷𝐹 |𝑤

is the residue of 𝜁𝐹(𝑠) at 𝑠 = 1. In particular, 𝐷𝐹 is the absolute discriminant of

𝐹, and 𝑑 = 𝑟1 + 2𝑟2, where 𝑟1 is the number of real places and 𝑟2 is the number

of complex places. Then the two integrals in (4.3) converges absolutely for all

𝑠 ∈ C.

Lemma 4.1. Let 𝑠 be a zero of 𝜁𝐹(𝑠) with ℜ(𝑠) > 0. Then 𝑍( 𝑓 , 𝑠) vanishes for all

𝑓∞ ∈ 𝒮(𝐹∞).

14
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Indeed, we can write 𝑍( 𝑓 , 𝑠) for ℜ(𝑠) > 1 as

𝑍( 𝑓 , 𝑠) = |𝐷𝐹 |−1/2𝑍( 𝑓∞, 𝑠)𝜁𝐹(𝑠).

Since 𝑍( 𝑓 , 𝑠), 𝜁𝐹(𝑠), and 𝑍( 𝑓∞, 𝑠) are holomorphic for 𝑠 ≠ 1 and ℜ(𝑠) > 0, the

Lemma follows.

For every finite place 𝑣, 𝑓 0

𝑣 is equal to |𝔡𝑣 |−1/21𝔡−1

𝑣
. Here 𝔡𝑣 ⊂ 𝐹𝑣 is the

different, 𝔡−1

𝑣 is inverse, 1𝔡−1

𝑣
is the characteristic function, and |𝔡𝑣 | is the ideal

norm (a positive power of 𝑞𝑣). Recall that∏
𝑣 finite

|𝔡𝑣 | = |𝐷𝐹 |.

Consider the first integral of (4.3):∫
𝐼+
𝐹

𝑓 (𝑥)|𝑥 |𝑠d×𝑥. (4.4)

If 𝑓 (𝑥) ≠ 0 for 𝑥 = (𝑥∞, 𝑥 𝑓 ), the decomposition 𝑓 𝑓 =
∏

𝑣 finite
𝑓𝑣 shows |𝑥 𝑓 | ≤ 1;

since |𝑥∞𝑥 𝑓 | ≥ 1,

|𝑥∞ | =
∏
𝑣 |∞

|𝑥𝑣 | ≥ 1. (4.5)

For the second integral, we have |𝑥𝑣 | ≤ |𝔡𝑣 | if 𝑥𝑣 ∈ 𝔡−1

𝑣 , so |𝑥 𝑓 | ≤
∏

𝑣 |𝔡𝑣 | = |𝐷𝐹 |
and

|𝑥∞ | ≥ |𝐷𝐹 |−1. (4.6)

Lemma 4.2. Suppose that there exists a Fourier pair ( 𝑓 , �̂� ) on 𝐹∞ = R𝑑
such that

𝑓 (𝑥∞) ≥ 0 if |𝑥∞ | ≥ 1, 𝑓 is strictly positive on the neighborhood of 1 in the set

|𝑥∞ | ≥ 1, �̂� (𝑦∞) ≥ 0 if |𝑦∞ | ≥ 𝐷−1

𝐹
and 𝑓 (0) = �̂� (0) = 0. Then 𝜁𝐹(𝑠) ≠ 0 for all 𝑠 in

the interval (0, 1).

(4.3) In fact (4.3) allows us to focus on its integrand: |𝑥 |𝑠 is strictly positive

on the domain of integration, and the integral (4.4) is strictly positive by the

assumptions on 𝑓 . Hence 𝑍( 𝑓 , 𝑠) > 0 and 𝜁𝐹(𝑠) ≠ 0 follows from Lemma 4.1.

Let 𝑥 = (𝑥𝑣) ∈ 𝐹∞. The Euclidean norm compatible with Tate’s Fourier

transform is

∥𝑥∥2 =
∑
𝑣 real

|𝑥𝑣 |2 + 2

∑
𝑣 complex

∥𝑥𝑣 ∥2.

Since

|𝑥 |2 =
∏
𝑣 real

|𝑥𝑣 |2
∏

𝑣 complex

∥𝑥𝑣 ∥4,

15
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arithmetic-geometric mean inequality gives

|𝑥 |2/𝑑 ≤ 1

𝑑
∥𝑥∥2

For 𝑟 = ∥𝑥∥, 𝜌 = ∥𝑦∥ (𝑦 ∈ 𝐹∞) we see that

|𝑥 | ≥ 1 ⇒ 𝑟 ≥
√
𝑑

|𝑦 | ≥ |𝐷𝐹 |−1 ⇒ 𝜌 ≥ |𝐷𝐹 |−1/𝑑√𝑑

Proposition 4.3. Suppose that there exists a number field of degree 𝑑 and dis-

criminant 𝐷 such that 𝜁𝐹 has a zero in (0, 1). Then

ℬ𝑑 ≥ 𝑑 |𝐷 |−1/𝑑 .

Conversely, 𝜁𝐹 has no zero if

𝑑 |𝐷 |−1/𝑑 > ℬ𝑑 .

The proof is now obvious. Suppose 𝑑 |𝐷 |−1/𝑑 > ℬ𝑑. As in §3, we can find radial

𝑓 and �̂� that are nonnegative for 𝑟 ≥
√
𝑑 and 𝜌 ≥ |𝐷 |−1/𝑑√𝑑. We can assume that

𝑓 is strictly positive for 𝑥 with

√
𝑑 ≤ ∥𝑥∥ ≤

√
𝑑 + 𝜀. Then the assumptions for

Lemma 4.2 are satisfied since ∥1∥ =
√
𝑑.

It is difficult to find a field 𝐹 satisfying the hypothesis of Proposition 4.3.

However, the decomposition of 𝜁𝐹(𝑠) in terms of Artin 𝐿-functions of Galois

extensions 𝐸 over 𝐹 allowed Armitage to exhibit such a zero (which is 𝑠 = 1/2,

as predicted by Riemann’s hypothesis). More precisely, Armitage considered an

explicit extension 𝐹 over 𝐸 = Q(
√

3(1 + 𝑖)) of degree 12 constructed by Serre [5],

which is of degree 48 over Q and satisfies 𝜁𝐹
(

1

2

)
= 0 [1, §4].

As a consequence, we have a weaker version of Theorem 3.1 from number

theory.

Proposition 4.4. For 𝑑 multiple of 48, ℬ𝑑 is strictly positive.

For 𝑑 = 48, this follows from the existence of 𝐹. Assume that 𝑑 = 48𝑐. There

exists a cyclotomic extension 𝐿 over Q linearly disjoint with 𝐹. Then 𝐿𝐹 has

degree 𝑑 over Q, and 𝜁𝐹 divides 𝜁𝐿𝐹 since 𝐿𝐹/𝐹 is abelian, and 𝜁𝐿𝐹 factorizes as

a product of Dirichlet 𝐿-functions over 𝐹. Hence the result follows.

You may wonder if Proposition 4.4 provides any restriction on the discrimi-

nant of a number field where 𝜁𝐹 has a real zero. In this case, we have

|𝐷 |1/𝑑 ≥ 𝑑

ℬ𝑑
. (4.7)
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By Theorem 3.1,

𝑑

ℬ𝑑
< 2𝜋𝑒 = 17.079 · · · .

Odlyzyko [3] proved a general unconditional bound

|𝐷 |1/𝑑 ≥ 22.2(1 + 𝑜(𝑑))

for 𝑑 → ∞. As result we get (4.7), at least for large enough 𝑑.

Hence Proposition 4.4 does not give any interesting improvement of the

lower bound of ℬ𝑑. However, it is striking to note that, at least for some degrees,

number theory provides a linear growth in 𝑑 given by Theorem 3.1. Let 𝑝 be

a prime number By theorems of Golod-Shafarevič and Brumer, there exists a

tower of number fields

𝐸1

𝑝 ⊂ 𝐸2

𝑝 ⊂ · · · ⊂ 𝐸𝑛
𝑝 ⊂ · · ·

where 𝐸1

𝑝 , that has degree 𝑝(𝑝 − 1) over Q, is a degree 𝑝 extension of Q(𝜁𝑝), and

𝐸𝑛+1

𝑝 /𝐸𝑛
𝑝 is unramified are unramified extensions of degree 𝑝. See [4, Cor 7]; we

adjoint 𝜁𝑝 by two successive abelian extensions of Q to obtain 𝐸1

𝑝 .

Consider the series of extensions 𝐹𝑖 = 𝐹𝐸𝑖
𝑝 of 𝐹𝑖 , where 𝐹𝑖+1/𝐹𝑖 is abelian of

degree 1 or 𝑝. We can extract a minimal, strictly increasing subsequence

𝐹0 = 𝐹𝐸
𝑛0

𝑝 ⊂ 𝐹1 ⊂ · · · ⊂ 𝐹𝑚 = 𝐹𝐸
𝑛𝑚
𝑝

where each extension is abelian of degree 𝑝. Since the extensions are all relatively

unramified, a classical formula for absolute discriminants gives

𝐷𝐹𝑚 = 𝐷
𝑝𝑚

𝐹0

=: 𝐷𝑝𝑚 . (4.8)

The successive extensions of 𝐹 are abelian, so 𝜁𝐹 divides 𝜁𝐹𝑚 for all 𝑚. Then

Proposition 4.3 shows that for 𝑑 = 𝑑0𝑝
𝑚

, 𝑑0 = [𝐹0 : Q]:

ℬ𝑑 ≥ 𝐶𝑑, 𝐶 = |𝐷 |−1/𝑑0 . (4.9)

For such degress, (3.11) and (4.9) shows that the growth ofℬ𝑑 - so is 𝐵𝑑 ≥ 1

2
ℬ𝑑,

is linear in 𝑑. If 𝑝 does not divide 𝐷𝐹, 𝐹 and Q(𝜁𝑝) are linearly disjoint and we

can choose 𝐸1

𝑝 to be linearly disjoint with 𝐹. Then 𝐹0 = 𝐹𝐸1

𝑝 and the inequality

(4.8) is valid for 𝑑 = 48(𝑝 − 1)𝑝𝑛 , 𝑛 ≥ 1. Of course, the (𝑝 − 1) term is not

necessary if one assumes Artin’ conjecture or Dedekind’s divisibility conjecture.

(Dedekind’s conjecture claims that 𝜁𝐹(𝑠) is divisible by 𝜁𝐸(𝑠) for all extensions

𝐸/𝐹. Then you can choose 𝐸1

𝑝 , possibly non-Galois, to be degree 𝑝 over Q. Then

the Artin’s conjecture on the holomorphicity of non-abelian 𝐿-functions implies

Dedekind’s conjecture.)
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