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0 Introduction

In the years following Apéry’s discovery of his irrationality proofs for 𝜁(2), 𝜁(3)
(see [8]), it has become clear that these proofs do not only have significance as

irrationality proofs, but the numbers that occur in them serve as interesting ex-

amples for several phenomena in algebraic geometry and modular form theory.

See [1, 2, 3, 5] for congruences of the Apéry numbers and [4, 7] for geometrical

and modular interpretations.1 Furthermore, it turns out that Apery’s proofs

themselves are in fact simple consequences of elementary complex analysis on

spaces of certain modular forms. In the present paper we describe this anal-

ysis together with some generalisations in Theorems 1 to 5. For example, we

prove that 8𝜁(3) − 5

√
5𝐿(3) ∉ Q(

√
5), where 𝐿(3) = ∑∞

𝑛=1

(
𝑛
5

)
𝑛−3

. Although the

use of modular forms in irrationality proofs looks promising at first sight, the

yield of new irrationality results thus far is disappointingly low. However, in

methods such as this it is easy to overlook some simple tricks that may give new

interesting results.

The first section of this paper describes the general framework of the proofs.

This section may seem vague at first sight, but in combination with the proof

of Theorem 1 we hope that things will be clear. We have given the proof of

Theorem 1 as extensively as possible in order to set it as an example for the other

proofs, where we omit some minor details now and then.

*
seewoo5@berkeley.edu. Some typos are fixed with footnotes.

1The original citations were in a different order, but it seems that this is the correct order.
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Preliminaries

1 Preliminaries

In this section we shall describe the general principles which are used in the

arguments of the following sections.

Let 𝑡(𝑞) =
∑∞
𝑛=0

𝑡𝑛𝑞
𝑛

a power series convergent for all |𝑞 | < 1. Let 𝑤(𝑞)
be another analytic function on |𝑞 | < 1. We like to study 𝑤 as function of 𝑡.

In general it will be a multivalued function over which we have no control.

However, we shall introduce some assumptions. First, 𝑡0 = 0, 𝑡1 ≠ 0. Let now

𝑞(𝑡) be the local inverse of 𝑡(𝑞) with 𝑞(0) = 0. Choose 𝑤(𝑞(𝑡)) for the value of 𝑤

around 𝑡 = 0. In order to determine the radius of convergence of the powerseries

𝑤(𝑞(𝑡)) = ∑∞
𝑛=0

𝑤𝑛𝑡
𝑛

we introduce branching values of 𝑡. We say that 𝑡 branches

above 𝑡0, if either 𝑡0 is not in the image of 𝑡, or if 𝑡′(𝑞0) = 0 for some 𝑞0 with

𝑡(𝑞0) = 𝑡0. In other words, 𝑡 branches above 𝑡0, if the map 𝑡 : {|𝑞 | < 1} → C is not

a local covering above 𝑡0. We call such a 𝑡0 a branching value of 𝑡. Now assume,

that 𝑡 has a discrete set of branching values 𝑡1, 𝑡2, . . . where we have excluded

zero as a possible value and suppose |𝑡1 | < |𝑡2 | < . . . . It is clear now that the

radius of convergence is in general |𝑡1 |. We shall be interested in cases where

the radius of convergence is larger than |𝑡1 |. Let 𝛾 be a closed contour in the

complex 𝑡-plane beginning and ending at the origin, not passing through any 𝑡𝑖

and which encircles the point 𝑡1 exactly once. Suppose that analytic continuation

of 𝑤(𝑞(𝑡)) along 𝛾 again yields the same branch of 𝑤(𝑞(𝑡)). Then 𝑤(𝑞(𝑡)) can

be continued analytically to the disc |𝑡 | < |𝑡2 | with exception of the possible

isolated singularity 𝑡1. If 𝑤(𝑞(𝑡)) remains bounded around we can conclude that

the radius of convergence is at least 𝑡2. Our irrationality proofs consist exactly of

the construction of such instances. The point of having a radius of convergence

as large as possible consists of the following Proposition.

Proposition 1.1. Let 𝑓0(𝑡), 𝑓1(𝑡), . . . , 𝑓𝑘(𝑡) be power series in 𝑡. Suppose that for

any 𝑛 ∈ N, 𝑖 = 0, 1, . . . , 𝑘 the 𝑛-th coefficient in the Taylor series of is rational

and has denominator dividing 𝑑𝑛[1, . . . , 𝑛]𝑟 where 𝑟, 𝑑 are certain fixed positive

integers and [1, . . . , 𝑛] is the lowest common multiple of 1, . . . , 𝑛. Suppose there

exist real numbers 𝜃1, . . . , 𝜃𝑘 such that 𝑓0(𝑡) +𝜃1 𝑓1(𝑡) + · · · +𝜃𝑘 𝑓𝑘(𝑡) has radius of

convergence 𝜌 and infinitely many nonzero Taylor coefficients. If 𝜌 > 𝑑𝑒𝑟 , then

at least one of 𝜃1, . . . , 𝜃𝑘 is irrational.

Remark. Note that if 𝑘 = 1 we have an honest irrationality proof.

Proof. Choose 𝜖 > 0 such that 𝜌 − 𝜖 > 𝑑𝑒𝑟(1+𝜖). Let 𝑓𝑖 =
∑∞
𝑛=0

𝑎𝑖 ,𝑛𝑡
𝑛
. Since the

radius of the convergence of 𝑓0 + 𝜃1 𝑓1 + · · · + 𝜃𝑘 𝑓𝑘 is 𝜌, we have for sufficiently
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Preliminaries

large 𝑛, |𝑎0,𝑛 + 𝜃1𝑎1,𝑛 + · · · + 𝜃𝑘𝑎𝑘,𝑛 | ≤ (𝜌 − 𝜖)−𝑛 . Suppose 𝜃1, . . . , 𝜃𝑘 are all

rational and have common denominator 𝐷. Then 𝐴𝑛 = 𝐷𝑑𝑛[1, . . . , 𝑛]𝑟 |𝑎0,𝑛 +
𝜃1𝑎1,𝑛 + · · · + 𝜃𝑘𝑎𝑘,𝑛 | is an integer smaller than 𝐷𝑑𝑛[1, . . . , 𝑛]𝑟(𝜌 − 𝜖)−𝑛 . By the

prime number theorem we have [1, . . . , 𝑛] < 𝑒(1+𝜖)𝑛 for sufficiently large 𝑛, hence

𝐴𝑛 < 𝐷(𝑑𝑒𝑟(1+𝜖)(𝜌− 𝜖)−1)𝑛 . Since 𝑑𝑒𝑟(1+𝜖)(𝜌− 𝜖)−1 < 1 this implies that 𝐴𝑛 = 0 for

sufficiently large 𝑛, in contradiction with the assumption 𝐴𝑛 ≠ 0 for infinitely

many 𝑛. Thus our proposition follows. □

The construction of the functions 𝑡(𝑞) and 𝑤(𝑞) will proceed using modular

forms and functions. The values for which we obtain irrationality results are in

fact values at integral points of Dirichlet series associated to modular forms.

Proposition 1.2. Let 𝐹(𝜏) = ∑∞
𝑛=1

𝑎𝑛𝑞
𝑛
, 𝑞 = 𝑒2𝜋𝑖𝜏

be a Fourier series convergent

for |𝑞 | < 1, such that for some 𝑘, 𝑛 ∈ N,

𝐹

(
− 1

𝑁𝜏

)
= 𝜀(−𝑖𝜏

√
𝑁)𝑘𝐹(𝜏)

where 𝜀 = ±1. Let 𝑓 (𝜏) be the Fourier series

𝑓 (𝜏) =
∞∑
𝑛=1

𝑎𝑛

𝑛𝑘−1

𝑞𝑛 .

Let

𝐿(𝐹, 𝑠) =
∞∑
𝑛=1

𝑎𝑛

𝑛𝑠

and finally,

ℎ(𝜏) = 𝑓 (𝜏) −
∑

0≤𝑟< 1

2
(𝑘−2)

𝐿(𝐹, 𝑘 − 𝑟 − 1)
𝑘!

(2𝜋𝑖𝜏)𝑟 .

Then

ℎ(𝜏) − 𝐷 = (−1)𝑘−1𝜀(−𝑖𝜏
√
𝑁)𝑘−2ℎ

(
− 1

𝑁𝜏

)
where 𝐷 = 0 if 𝑘 is odd and 𝐷 = 𝐿(𝐹, 1

2
𝑘)(2𝜋𝑖𝜏) 1

2
𝑘−1/(1

2
𝑘 − 1)! if 𝑘 is even.

Moreover, 𝐿(𝐹, 1

2
𝑘) = 0 if 𝜀 = −1.

Proof. We apply a lemma of Hecke, see [9, Section 5] with 𝐺(𝜏) = 𝜀𝐹(𝜏)/(𝑖
√
𝑁)𝑘

to obtain

𝑓 (𝜏) − 𝜀(−1)𝑘−1(−𝑖𝜏
√
𝑁)𝑘−2 𝑓

(
− 1

𝑁𝜏

)
=

𝑘−2∑
𝑟=0

𝐿(𝐹, 𝑘 − 𝑟 − 1)
𝑟!

(2𝜋𝑖𝜏)𝑟 .
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The group Γ1(6)

Split the summation on the right hand side into summations over 𝑟 < 1

2
𝑘 − 1,

𝑟 > 1

2
𝑘 − 1 and, possibly, 𝑟 = 1

2
𝑘 − 1. For the region 𝑟 > 1

2
𝑘 − 1 we apply the

functional equation

𝐿(𝐹, 𝑘 − 𝑟 − 1)
𝑟!

= 𝜀(−1)𝑘(−𝑖
√
𝑁)𝑘−2

(
− 1

𝑁

) 𝑘−𝑟−2

(2𝜋𝑖)𝑘−2𝑟−2
𝐿(𝐹, 𝑟 + 1)
(𝑘 − 𝑟 − 2)!

and substitute 𝑟 by 𝑘 − 2 − 𝑟. □

2 The group Γ1(6)

This group is exactly the subgroup of SL2(Z) of all matrices ( 𝑎 𝑏𝑐 𝑑 ) with 𝑎 ≡ 𝑑 ≡ 1

(mod 6), 𝑐 ≡ 0 (mod 6). Its fundamental domain can be pictured as below.

−1

2

1

2
−1

3

1

3

A complete set of inequivalent cusps is given by 0, 1/2, 1/3,∞. They are regular

and have widths 6, 3, 2, 1 respectively. Consider the following function

𝑦(𝜏) =
𝜂(6𝜏)8𝜂(𝜏)4
𝜂(2𝜏)6𝜂(3𝜏)4

where

𝜂(𝜏) = 𝑞1/24

∞∏
𝑛=1

(1 − 𝑞𝑛), 𝑞 = 𝑒2𝜋𝑖𝜏 , 𝜏 ∈ H.

That it is a modular function on Γ1(6) can be checked using the tranformation

formula for 𝜂(𝜏) in [6, Ch 9]. Since 𝑦(𝜏) has only one simple zero in the funda-

mental domain it generates the field of modular functions on Γ1(6). Moreover,

𝑦(0) = 1

9
, 𝑦(1

3
) = 1, 𝑦(1

2
) = ∞, 𝑦(∞) = 0. The function 𝑦(− 1

6𝜏 ) is again invariant

on Γ1(6) and one easily checks that

𝑦

(
− 1

6𝜏

)
=
𝑦(𝜏) − 1/9

𝑦(𝜏) − 1

. (1)
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The group Γ1(6)

Hence the function

𝑡(𝜏) = 𝑦(𝜏)
1 − 9𝑦(𝜏)
1 − 𝑦(𝜏)

is invariant under the involution 𝜏 ↦→ −1/6𝜏. Moreover,

𝑡(𝜏) =
(
Δ(6𝜏)Δ(𝜏)
Δ(3𝜏)Δ(2𝜏)

)
1/2

= 𝑞

∞∏
𝑛=0

(1 − 𝑞6𝑛+1)12(1 − 𝑞6𝑛+5)−12

which is checked by noticing that (Δ(6𝜏)Δ(𝜏)/Δ(3𝜏)Δ(2𝜏))1/2
is modular with

respect to Γ1(6), invariant under 𝜏 ↦→ −1/6𝜏 and its zeros and poles coincide

with those of 𝑡(𝜏).

Proposition 2.1. The function 𝑡(𝜏) maps the shaded open area in the picture

below univalently onto the upper half plane and satisfies

𝑡(𝑖∞) = 0, 𝑡

(
𝑖√
6

)
= (

√
2 − 1)4, 𝑡

(
2

5

+ 𝑖

5

√
6

)
= (

√
2 + 1)4, 𝑡

(
1

2

)
= ∞.

𝑖√
6

−1

2

1

2
−1

3

1

3

2

5
+ 𝑖

5

√
6

II I

|𝜏| = 1√
6

𝜏 ↦→ 𝑡(𝜏)

𝑡(𝑖∞) 𝑡
(
𝑖√
6

)
𝑡
(

2

5
+ 𝑖

5

√
6

)
Proof. That 𝑡(𝑖∞) = 0, 𝑡(1

2
) = ∞ can be ssen from the values 𝑦(𝑖∞) = 0, 𝑦(1

2
) = ∞.

From (1) it follows that for 𝜏 = 𝑖√
6

and 𝑦0 = 𝑦( 𝑖√
6

), we have 𝑦0 =
𝑦0− 1

9

𝑦0−1
, hence

𝑦0 = 1 ± 2

√
2

3
and correspondingly, 𝑡( 𝑖√

6

) = (
√

2 ± 1)4. The same principle can

be applied to obatin 𝑡(2

5
+ 𝑖

5

√
6

) = (
√

2 ± 1)4. To decide which sign should be

taken, one estimates 𝑡( 𝑖√
6

) and 𝑡(2

5
+ 𝑖

5

√
6

) numerically and obtain the values of

our proposition. Furthermore, 𝑡(𝜏) assumes every value at most once in the

union of I and II. Our proposition now follows. □

In the theorems and proofs that follow we let M𝑘(Γ1(6)) be the space of

modular forms of weight 𝑘 with respect to Γ1(6), and let

𝐸4(𝜏) = 1 + 240

∞∑
𝑛=1

𝜎3(𝑛)𝑞𝑛 , 𝐸2(𝜏) = 1 − 24

∞∑
𝑛=1

𝜎1(𝑛)𝑞𝑛

be the standard Eisenstein series.
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The group Γ1(6)

Theorem 1. 𝜁(3) is irrational.

Proof. Let

40𝐹(𝜏) = 𝐸4(𝜏) − 36𝐸4(𝜏) − 7(4𝐸4(2𝜏) − 9𝐸4(3𝜏))
24𝐸(𝜏) = −5(𝐸2(𝜏) − 6𝐸2(6𝜏)) + 2𝐸2(2𝜏) − 3𝐸2(3𝜏).

Notice that 𝐹(𝜏) ∈ M4(Γ1(6)) and 𝐹(− 1

6𝜏 ) = −36𝜏4𝐹(𝜏), 𝐹(𝑖∞) = 0 and 𝐸(𝜏) ∈
M2(Γ1(6)), 𝐸(− 1

6𝜏 ) = −6𝜏2𝐸(𝜏). The Dirichlet series corresponding to 𝐹(𝜏) reads

𝐿(𝐹, 𝑠) =
∞∑
𝑛=1

6𝜎3(𝑛)
𝑛𝑠

− 36

6𝜎3(𝑛)
(6𝑛)𝑠 − 28

6𝜎3(𝑛)
(2𝑛)𝑠 + 63

6𝜎3(𝑛)
(3𝑛)𝑠

= 6(1 − 6
2−𝑠 − 7 · 2

2−𝑠 + 7 · 3
2−𝑠)𝜁(𝑠)𝜁(𝑠 − 3).

Define 𝑓 (𝜏) by ( d

d𝜏 )3 𝑓 (𝜏) = (2𝜋𝑖)3𝐹(𝜏), 𝑓 (𝑖∞) = 0. From Proposition 1.2 and the

fact that 𝐹(− 1

6𝜏 ) = −36𝜏4𝐹(𝜏) follows2

6𝜏2

(
𝑓

(
− 1

6𝜏

)
− 𝐿(𝐹, 3)

)
= −( 𝑓 (𝜏) − 𝐿(𝐹, 3))

and since 𝐿(𝐹, 3) = 6 · (−1/3)𝜁(3)𝜁(0) = 𝜁(3), we have

6𝜏2

(
𝑓

(
− 1

6𝜏

)
− 𝜁(3)

)
= −( 𝑓 (𝜏) − 𝜁(3)).

Multiplication with 𝐸(−1/6𝜏) = −6𝜏2𝐸(𝜏) gives

𝐸

(
− 1

6𝜏

) (
𝑓

(
− 1

6𝜏

)
− 𝜁(3)

)
= 𝐸(𝜏)( 𝑓 (𝜏) − 𝜁(3)). (2)

The function 𝐸(𝜏)( 𝑓 (𝜏) − 𝜁(3)) can be considered as a multivalued function of

𝑡 = 𝑡(𝜏). We choose it at 𝑡 = 0 as follows. From the expansion 𝑡 = 𝑞
∏∞

𝑛=1
(1 −

𝑞6𝑛+1)12(1− 𝑞6𝑛+5)−12 = 𝑞−12𝑞2+66𝑞3−220𝑞4+495𝑞5− . . . one infers the inverse

expansion 𝑞 = 𝑡+12𝑡2+222𝑡3+ . . . . Then, from 𝐸(𝜏) = 1+5𝑞+13𝑞2+ . . . one finds

𝐸(𝑡) = 1 + 5𝑡 + 73𝑡2 + 1445𝑡3 + . . . and similarly, 𝐸(𝑡)𝐹(𝑡) = 6𝑡 + (351/4)𝑡2 + . . . .
By construction one notes that 𝐸(𝑡) ∈ Z⟦𝑡⟧ and and 𝐸(𝑡) 𝑓 (𝑡) =

∑∞
𝑛=1

𝑎𝑛𝑡
𝑛

where 𝑎𝑛 ∈ Z/[1, . . . , 𝑛]3. Since the inverse function 𝑡 → 𝜏 branches at (
√

2 − 1)4
one expects the radius of convergence of𝐸(𝑡)( 𝑓 (𝑡)−𝜁(3)) to be (

√
2−1)4. However,

by the property (2), the function 𝑡 ↦→ 𝐸(𝑡)( 𝑓 (𝑡) − 𝜁(3)) has no branch point at

𝑡 = (
√

2 − 1)4, and its radius of convergence equals at least the next branching

value, which is (
√

2+1)4. Furthermore, it cannot be a polynomial in 𝑡, since then

𝑓 (𝜏)− 𝜁(3) would be a modular form of weight −2, which is impossible. We now

apply Proposition 1.1 with 𝜃1 = 𝜁(3) to conclude 𝜁(3) ∉ Q. □

2There’s a typo in the original article: 𝐿(𝐹, 𝑠) should be 𝐿(𝐹, 3).
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Remark. Note that 1, 5, 73, 1445, . . . are exactly Apéry’s numbers for 𝜁(3).

Theorem 2. Let 𝐹(𝜏) = 𝜂(𝜏)2𝜂(2𝜏)2𝜂(3𝜏)2𝜂(6𝜏)2 and 𝐿(𝐹, 𝑠) the corresponding

Dirichlet series. Then at least one of the numbers 𝜋−2𝐿(𝐹, 2) and 𝐿(𝐹, 3) +
47𝐿(𝐹,2)𝜁(3)

48𝜋2
is irrational.

Proof. The function 𝐹(𝜏) is in M4(Γ1(6)), it is a cusp form, and 𝐹(− 1

6𝜏 ) = 36𝜏4𝐹(𝜏).
Let 𝑓 (𝜏) be the Fourier series such that ( d

d𝜏 )3 𝑓 (𝜏) = (2𝜋𝑖)3𝐹(𝜏), 𝑓 (𝑖∞) = 0. Then

it follows from Proposition 1.2 that

6𝜏2

(
𝑓

(
− 1

6𝜏

)
− 𝐿(𝐹, 3)

)
= 𝑓 (𝜏) − 𝐿(𝐹, 3) − 𝐿(𝐹, 2)(2𝜋𝑖𝜏). (3)

Consider also

240𝐺(𝜏) = 13(𝐸4(𝜏) + 36𝐸4(6𝜏)) − 37(4𝐸4(2𝜏) + 9𝐸4(3𝜏)).

It ahs the properties𝐺(𝑖∞) = 0,𝐺(− 1

6𝜏 ) = 36𝜏4𝐺(𝜏). The corresponding Dirichlet

series reads

𝐿(𝐺, 𝑠) = (13 + 13 · 6
2−𝑠 − 37 · 2

2−𝑠 − 37 · 3
2−𝑠)𝜁(𝑠)𝜁(𝑠 − 3).

Letting ( d

d𝜏 )3𝑔(𝜏) = (2𝜋𝑖)3𝐺(𝜏), 𝑔(𝑖∞) = 0, we have

6𝜏2

(
𝑔

(
− 1

6𝜏

)
− 𝐿(𝐺, 3)

)
= 𝑔(𝜏) − 𝐿(𝐺, 3) − 𝐿(𝐺, 2)(2𝜋𝑖𝜏),

hence,

6𝜏2

(
𝑔

(
− 1

6𝜏

)
− 47

3

𝜁(3)
)
= 𝑔(𝜏) − 47

6

𝜁(3) + 48𝜁(2)(2𝜋𝑖𝜏). (4)

Elimination of 2𝜋𝑖𝜏 form (3) and (4) gives that the function ℎ(𝜏) = 48𝜁(2)( 𝑓 (𝜏) −
𝐿(𝐹, 3)) + 𝐿(𝐹, 2)(𝑔(𝜏) − 47

6
𝜁(3)) behaves like 6𝜏2ℎ(− 1

6𝜏 ) = ℎ(𝜏). Now consider

𝐸(𝜏) = 𝐸2(𝜏) − 2𝐸2(2𝜏) + 6𝐸2(3𝜏) − 3𝐸2(6𝜏).

It is in M2(Γ1(6)) and we have 𝐸(− 1

6𝜏 ) = 6𝜏2𝐸(𝜏). Consequently, 𝐸(− 1

6𝜏 )ℎ(− 1

6𝜏 ) =
𝐸(𝜏)ℎ(𝜏) and by an argument to the one in Theorem 1 we find that

48𝜁(2) 𝑓 (𝑡)𝐸(𝑡) + 𝐿(𝐹, 2)𝑔(𝑡)𝐸(𝑡) −
(
48𝜁(2)𝐿(𝐹, 3) + 𝐿(𝐹, 2)47

6

𝜁(3)
)
𝐸(𝑡)

is a power series in 𝑡with radius of convergence (
√

2+1)4. Again the denominator

of the 𝑛-th coefficient in the power series of 𝐸(𝑡) 𝑓 (𝑡), 𝐸(𝑡)𝑔(𝑡), 𝐸(𝑡) divides

[1, . . . , 𝑛]3. We can now apply Proposition 1.1 to obtain our theorem. □

7



The group Γ1(6)

Theorem 3. Let

∞∑
𝑛=1

𝑎𝑛𝑞
𝑛 =

(
𝜂9(𝜏)𝜂9(6𝜏)
𝜂3(2𝜏)𝜂3(3𝜏)

) 1

2

= 𝑞

∞∏
𝑛=1

(1 − 𝑞𝑛)3(1 − 𝑞3𝑛)3 (1 + 𝑞3𝑛) 9

2

(1 + 𝑞𝑛) 3

2

.

Then

∑∞
𝑛=1

𝑎𝑛/𝑛2
is irrational.

Proof. Consider the product

𝐸(𝜏) =
𝜂7(2𝜏)𝜂7(3𝜏)
𝜂5(𝜏)𝜂5(6𝜏) .

We have 𝐸(− 1

6𝜏 ) = −6𝜏2𝐸(𝜏) and hence

√
𝐸(− 1

6𝜏 ) = ±(𝑖𝜏
√

6)
√
𝐸(𝜏). Since 𝐸(𝜏) has

only zeros and poles in the cusps, it can be well-defined on the upper half plane.

Since 𝐸( 𝑖√
6

) ≠ 0, we should have

√
𝐸(− 1

6𝜏 ) = −𝑖𝜏
√

6𝐸(𝜏). Now consider

𝐹(𝜏) =
𝜂7(𝜏)𝜂7(6𝜏)
𝜂5(2𝜏)𝜂5(3𝜏)

√
𝐸(𝜏)

which obeys 𝐹(− 1

6𝜏 ) = (−𝑖𝜏
√

6)3𝐹(𝜏). Let 𝑓 (𝜏)be defined by ( d

d𝜏 )2 𝑓 (𝜏) = (2𝜋𝑖)2𝐹(𝜏),
𝑓 (𝑖∞) = 0. Then

−𝑖𝜏
√

6

(
𝑓

(
− 1

6𝜏

)
− 𝐿(𝐹, 2)

)
= 𝑓 (𝜏) − 𝐿(𝐹, 2).

Multiplication with

√
𝐸(− 1

6𝜏 ) = −𝑖𝜏
√

6

√
𝐸(𝜏) yields3√

𝐸

(
− 1

6𝜏

) (
𝑓

(
− 1

6𝜏

)
− 𝐿(𝐹, 2)

)
=
√
𝐸(𝜏)( 𝑓 (𝜏) − 𝐿(𝐹, 2)).

Notice that

√
𝐸(𝜏) considered as a function of 𝑡 is a power series whose 𝑛-th

coefficient is rational and has denominator dividing 4
𝑛[1, . . . , 𝑛]2. By the same

argument as in the previous theorems, the radius of convergence of

√
𝐸(𝑡)( 𝑓 (𝑡)−

𝐿(𝐹, 2)) is at least (
√

2 + 1)4. Since 4𝑒 < (
√

2 + 1)4, we can apply Proposition 1.1

to find our theorem. □

Remark. Theorem 3 is the one alluded to in [1].

3There’s a typo in the original article: 𝑓 (𝜏) on the LHS should be 𝑓 (− 1

6𝜏 ).
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The group Γ1(5)

3 The group Γ1(5)

The fundamental domain of the group Γ1(5) = {( 𝑎 𝑏𝑐 𝑑 ) ∈ SL2(Z) : 𝑎 ≡ 𝑑 ≡ 1

(mod 5), 𝑐 ≡ 0 (mod 5)} can be pictured as below. The cusps are given by

0, 1

2
, 2

5
, 𝑖∞.

−1

2

1

2
−2

5

2

5

They are regular and have widths 5, 5, 1, 1 respectively. Consider the following

function,

𝑦(𝜏) = 𝑞

∞∏
𝑛=1

(1 − 𝑞𝑛)5( 𝑛5 )

where

(
𝑛
5

)
it the Legendre symbol. The function 𝑦(𝜏) is a hauptmodul for the

groupΓ1(5). Moreover, 𝑦(0) = −11

2
+ 5

2

√
5, 𝑦(2

5
) = 𝑖∞, 𝑦(1

2
) = −11

2
− 5

2

√
5, 𝑦(𝑖∞) = 0.

The function 𝑦(− 1

5𝜏 ) is again modular with respect to Γ1(5) and one easily checks

that

𝑦

(
− 1

5𝜏

)
=

𝜆1 − 𝑦(𝜏)
1 + 𝜆1𝑦(𝜏)

, 𝜆1 = −11

2

+ 5

2

√
5.

So the function

𝑡(𝜏) = 𝑦(𝜏)
𝜆1 − 𝑦(𝜏)
1 + 𝜆1𝑦(𝜏)

is invariant under the involution 𝑡 ↦→ −1/5𝜏. In a similar way as in Proposition

2.1 one shows,

Proposition 3.1. The function 𝑡(𝜏) maps the shaded open area in the picture

below univalently onto the upper half plane and satisfies

𝑡(𝑖∞) = 0, 𝑡

(
𝑖√
5

)
= (𝜆2+

√
1 + 𝜆2

2
)2, 𝑡

(
4

9

+ 𝑖

9

√
5

)
= (𝜆2−

√
1 + 𝜆2

2
)2, 𝑡

(
1

2

)
= ∞

where 𝜆2 = 11

2
− 5

2

√
5.

9



The group Γ1(5)

𝑖√
6

−1

2

1

2
−2

5

2

5

4

9
+ 𝑖

9

√
5

|𝜏| = 1√
5

𝜏 ↦→ 𝑡(𝜏)

𝑡(𝑖∞) 𝑡
(
𝑖√
5

)
𝑡
(

4

9
+ 𝑖

9

√
5

)
We also consider the function

𝑠(𝜏) = 𝑦(𝜏)
𝜆2 − 𝑦(𝜏)
1 + 𝜆2𝑦(𝜏)

, 𝜆2 =
11

2

− 5

2

√
5.

Lemma 3.2. The branching values of 𝑠(𝜏), as defined in Section 1, read 0,∞ and

(𝜆1 ±
√

1 + 𝜆2

1
)2 where 𝜆1 = −11

2
+ 5

2

√
5.

Proof. The branching values of 𝑠(𝜏) are the values of 𝑠(𝜏) at the cusps or the

values at the points 𝜏, ℑ𝜏 > 0 where 𝑠′(𝜏) = 0. The values at the cusps are 0,∞.

Notice that

𝑠′

𝑠
=

(
1 + 𝑦

𝑦 − 𝜆2

− 𝑦

𝑦 − 𝜆1

)
𝑦′

𝑦
=
𝑦2 + (11 − 5

√
5)𝑦 − 1

𝑦2 + 11𝑦 − 1

𝑦′

𝑦
.

The function
𝑦′

𝑦 can only be zero at the cusps 0, 1

2
. If 𝑦2 +(11−5

√
5)𝑦−1 = 0 then

𝑦 = 𝜆1 ±
√

1 + 𝜆2

1
which implies 𝑠 = (𝜆1 ±

√
1 + 𝜆2

1
)2. □

Notice that the 𝑞-expansions of 𝑡(𝜏), 𝑠(𝜏) read

𝑡(𝜏) =
∞∑
𝑛=1

𝑎𝑛𝑞
𝑛 , 𝑠(𝜏) =

∞∑
𝑛=1

𝑏𝑛𝑞
𝑛

where 𝑎𝑛 , 𝑏𝑛 are algebraic integers in Q(
√

5). From the construction follows that

for every 𝑛 the numbers 𝑎𝑛 , 𝑏𝑛 are conjugates.

Theorem 4. Let 𝐿(3, 𝜒) = ∑∞
𝑛=1

(
𝑛
5

)
𝑛−3

, where

(
𝑛
5

)
is the Legendre symbol. Then

8𝜁(3) − 5

√
5𝐿(3, 𝜒) is not in Q(

√
5).

Proof. Consider the weight 4 form on Γ1(5) given by

24𝐹(𝜏) = 𝐸4(𝜏) − 25𝐸4(5𝜏) + 24(𝐸4(𝜒, 𝜏) − 5

√
5𝐹4(𝜒, 𝜏))

10



The group Γ1(5)

where

𝐸4(𝜒, 𝜏) = 1 +
∞∑
𝑛=1

(𝑛
5

) 𝑛3𝑞𝑛

1 − 𝑞𝑛 ,

𝐹4(𝜒, 𝜏) =
∞∑

𝑚,𝑛=1

(𝑛
5

)
𝑚3𝑞𝑚𝑛 .

Note that up to a constant factor, 𝐹(𝜏) is cahracterised by the facts 𝐹(𝜏) ∈
M4(Γ1(5)), 𝐹(𝑖∞) = 0, 𝐹(− 1

5𝜏 ) = −25𝜏4𝐹(𝜏). The corresponding Dirichlet series

reads

𝐿(𝐹, 𝑠) = 10(1 − 5
2−𝑠)𝜁(𝑠)𝜁(𝑠 − 3) + 𝜁(𝑠)𝐿(𝑠 − 3, 𝜒) − 5

√
5𝜁(𝑠 − 3)𝐿(𝑠, 𝜒)

where

𝐿(𝑠, 𝜒) =
∞∑
𝑛=1

(𝑛
5

)
𝑛−𝑠 .

Define 𝑓 (𝜏) by 𝑓 (𝑖∞) = 0, ( d

d𝜏 )3 𝑓 (𝜏) = (2𝜋𝑖)3𝐹(𝜏). then, from Proposition 1.2

follows that

5𝜏2

(
𝑓

(
− 1

5𝜏

)
− 𝐴

)
= −( 𝑓 (𝜏) − 𝐴)

where

𝐴 = 10

(
1 − 1

5

)
𝜁(3)𝜁(0) + 𝜁(3)𝐿(0, 𝜒) − 5

√
5𝜁(0)𝐿(3, 𝜒)

= −1

3

(8𝜁(3) − 5

√
5𝐿(3, 𝜒)).

Now let

−8𝐸(𝜏) = 𝐸2(𝜏) − 5𝐸2(5𝜏) + 20(𝐸2(𝜒, 𝜏) −
√

5𝐹2(𝜒, 𝜏))

where

𝐸2(𝜒, 𝜏) = −1

5

+
∞∑
𝑛=1

(𝑛
5

) 𝑛𝑞𝑛

1 − 𝑞𝑛 ,

𝐹2(𝜒, 𝜏) =
∞∑

𝑚,𝑛=1

(𝑛
5

)
𝑚𝑞𝑚𝑛 .

The function 𝐸(𝜏) satisfies 𝐸(− 1

5𝜏 ) = −5𝜏2𝐸(𝜏), hence 𝐸(𝜏)( 𝑓 (𝜏)−𝐴) is fixed under

the involution 𝜏 ↦→ −1/5𝜏. Consider 𝐸(𝜏) and 𝐸(𝜏) 𝑓 (𝜏) as functions of 𝑡 = 𝑡(𝜏)
and write

𝐸(𝜏) 𝑓 (𝜏) =
∞∑
𝑛=1

𝑐𝑛𝑞
𝑛 , 𝐸(𝜏) =

∞∑
𝑛=1

𝑑𝑛𝑞
𝑛 .

11



The group Γ1(5)

By construction it follows that 𝑑𝑛 and [1, . . . , 𝑛]3𝑐𝑛 are algebraic integers in

Q(
√

5). Just as in the proof of Theorem 1, we observe that the radius of conver-

gence of 𝐸(𝑡)( 𝑓 (𝑡) − 𝐴) equals (𝜆2 +
√

1 + 𝜆2

2
)2 4 and hence for all 𝜖 > 0,

|𝑐𝑛 − 𝐴𝑑𝑛 | < (𝜆2 +
√

1 + 𝜆2

2
)(2−𝜖)𝑛 ∀𝑛 > 𝑛0(𝜖). (5)

Now consider the functions

24𝐹(𝜏) = 𝐸4(𝜏) − 25𝐸4(5𝜏) + 24(𝐸4(𝜒, 𝜏) + 5

√
5𝐹4(𝜒, 𝜏))

the corresponding third primitive 𝑓 (𝜏) and

−8𝐸(𝜏) = 𝐸2(𝜏) − 5𝐸2(5𝜏) + 20(𝐸2(𝜒, 𝜏) +
√

5𝐹2(𝜒, 𝜏)).

Consider them as functions of 𝑠 = 𝑠(𝜏) and write

𝐸(𝜏) 𝑓 (𝜏) =
∞∑
𝑛=1

𝑐𝑛𝑞
𝑛 , 𝐸(𝜏) =

∞∑
𝑛=1

𝑑𝑛𝑞
𝑛 .

From the construction follows that 𝑐𝑛 , 𝑑𝑛 are conjugates of 𝑐𝑛 , 𝑑𝑛 respectively. By

Lemma 3.2 the smallest nonzero branching value of 𝑠(𝜏) equals (−𝜆1 +
√

1 + 𝜆2

1
)2

and hence the radius of convergence of both

∑∞
𝑛=1

𝑐𝑛𝑠
𝑛

and

∑∞
𝑛=1

𝑑𝑛𝑠
𝑛

is at least

(−𝜆1 +
√

1 + 𝜆2

1
)2. Hence for any 𝜃 ∈ C and any 𝜖 > 0

|𝑐𝑛 − 𝜃𝑑𝑛 | < (𝜆1 +
√

1 + 𝜆2

1
)(2+𝜖)𝑛 ∀𝑛 > 𝑛1(𝜖, 𝜃). (6)

Now suppose 𝐴 ∉ Q(
√

5). Let 𝐴 be its conjugate and let 𝑑 be its denominator.

Multiplication of (5) and (6) with 𝜃 = 𝐴 yields

|𝑐𝑛𝑐𝑛 − (𝑐𝑛𝑑𝑛𝐴 + 𝑐𝑛𝑑𝑛𝐴) + 𝑑𝑛𝑑𝑛𝐴𝐴| <
(

1

20.3

)
2𝑛

∀𝑛 > 𝑛0. (7)

Since 𝑐𝑛𝑐𝑛 ∈ Z/[1, . . . , 𝑛]6, 𝑐𝑛𝐷𝑛𝐴+𝑐𝑛𝑑𝑛𝐴 ∈ Z/𝑑[1, . . . , 𝑛]3, 𝑑𝑛𝑑𝑛𝐴𝐴 ∈ Z/𝑑2
and

𝑑2[1, . . . , 𝑛]6 < (20.1)2𝑛 < (20.3)2𝑛 for sufficiently large 𝑛. Hence 𝑐𝑛 − 𝑑𝑛𝐴 = 0

for 𝑛 large enough, and we have a contradiction. Theorem 4 now follows. □

Remark. By some tedius calculation one can veritfy that the numbers 𝑑𝑛 satisfy

the recurrence relation

(𝑛 + 1)3𝑑𝑛+1 = ((124 + 55

√
5)𝑛(𝑛 + 1) + 34 + 15

√
5)(2𝑛 + 1)𝑑𝑛 − 𝑛3𝑑𝑛−1

𝑑0 = 1, 𝑑1 = 34 + 15

√
5, 𝑑2 = 7111 + 3180

√
5, 𝑑3 = 2040334 + 912465

√
5.

4There’s a typo in the original article: sign is fixed.
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The group Γ1(5)

Theorem 5. The number 𝜁(2) = 𝜋2

6
is irrational.

Proof. Consider the function

2𝑖

5

𝐹(𝜏) = (2 + 𝑖)𝐸3(𝜒, 𝜏) − (2 − 𝑖)𝐸3(𝜒, 𝜏)

where

𝐸3(𝜒, 𝜏) =
−2 + 𝑖

5

+
∞∑
𝑖=1

𝜒(𝑘)
𝑘2𝑞𝑘

1 − 𝑞𝑘

and 𝜒(𝑘) is the odd character modulo 5 given by 𝜒(2) = −𝑖 and 𝜒 is its complex

conjugate. Then 𝐹(𝜏) ∈ M3(Γ1(5)), and, in particular, 𝐹( 𝜏
5𝜏+1

) = (5𝜏+ 1)3𝐹(𝜏). Let

𝑓 (𝜏) be the Fourier series determined by 𝑓 (𝑖∞) = 0 and ( d

d𝜏 )2 𝑓 (𝜏) = (2𝜋𝑖)2𝐹(𝜏).
In a straightforward manner one can verify that

(5𝜏 + 1)
(
𝑓
( 𝜏
5𝜏 + 1

)
− 𝐿(𝐹, 2)

)
= 𝑓 (𝜏) − 𝐿(𝐹, 2)

where

𝐿(𝐹, 2) = 5

2𝑖
𝜁(2)((2 + 𝑖)𝐿(0, 𝜒) − (2 − 𝑖)𝐿(0, 𝜒)) = 𝜁(2).

Consider also

𝐸(𝜏) = 3 + 𝑖
2

𝐸1(𝜒, 𝜏) +
3 − 𝑖

2

𝐸1(𝜒, 𝜏)

where

𝐸1(𝜒, 𝜏) =
3 − 𝑖
10

+
∞∑
𝑘=1

𝜒(𝑘)
𝑞𝑘

1 − 𝑞𝑘
.

Then 𝐸(𝜏) ∈ M1(Γ1(5)) and we obtain

𝐸
( 𝜏
5𝜏 + 1

) (
𝑓
( 𝜏
5𝜏 + 1

)
− 𝜁(2)

)
= 𝐸(𝜏)( 𝑓 (𝜏) − 𝜁(2)).

This implies that 𝐸(𝜏)( 𝑓 (𝜏)−𝜁(2)) considered as function of 𝑦(𝜏) does not branch

above 𝑦 = −11

2
+ 5

2

√
5, corresponding to 𝜏 = 0. Hence 𝐸(𝜏)( 𝑓 (𝜏) − 𝜁(2)) as a

function of 𝑦 is a Taylor series in 𝑦 with radius of convergence
11

2
+ 5

2

√
5. Note

that by construction 𝐸(𝜏) has a 𝑦-expansion with integral coefficients, and the

𝑛th coefficient in the 𝑦-expansion of 𝐸(𝜏) 𝑓 (𝜏) is rational with a denominator that

divides [1, . . . , 𝑛]2. Out standard argument now yields 𝜁(2) ∉ Q. □

Remark. Notice that𝐸(𝑡) = 1+3𝑡+19𝑡2+147𝑡3+· · · and the numbers 1, 3, 19, 147, . . .

correspond exactly to Apéry’s numbers for 𝜁(2). The function 𝐸(𝜏) is also dis-

cussed in [2, p59].
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