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Introduction

The Gan–Gross–Prasad [18] conjectures have two aspects: local and global. Lo-

cally, these relate to certain branching laws between representations of real or

𝑝-adic Lie groups while globally, they characterize the non-vanishing of certain

explicit integrals of automorphic forms that are commonly called (automorphic)

periods. What makes these predictions interesting is that they involve fine arith-

metic invariants: local epsilon factors on the one hand and values of automorphic

𝐿-functions at their center of symmetry on the other. These conjectures, which

relate to all the classical groups (hermitian or skew-hermitian unitary spaces,

symplectic and special orthogonal; this last case had moreover been considered

long before by Gross and Prasad [26, 27]), have known many recent advances.

More precisely, the local conjecture is now demonstrated in almost all cases af-

ter the seminal work of Waldspurger [63, 64, 65, 66] and Mœglin–Waldspurger

[46] followed by the author [6, 7, 9, 8], Gan-Ichino [20], Hiraku Atobe [4] and

finally Hongyu He [30]. The global conjecture has been established for unitary
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groups of hermitian spaces under certain local restrictions in a breakthrough

by Wei Zhang [77] following the work of Jacquet-Rallis [36] and Zhiwei Yun

[75]. Similar results have been obtained for unitary groups of skew-hermitian

spaces by Hang Xue [70] following Yifeng Liu [41]. There is also a refinement of

the global conjecture, initially due to Ichino-Ikeda [34] in the case of orthogonal

groups then extended to unitary and symplectic groups by Neal Harris [29] and

Hang Xue [71, 73], under the form of an identity explicitly linking periods and

central values of automorphic 𝐿-functions. This refinement is now also proven

for unitary groups under certain local assumptions after [76], the author [10],

and Hang Xue [71, 72].

In this text, we propose the precise statements of these conjectures and the

recent results mentioned above as well as to give brief overviews of the proofs

that it would be very difficult to fully describe here as the techniques used vary

(relative trace formulae, theta correspondence, endoscopy theory...). Moreover,

as we have already explained, these conjectures relate to all the types of classical

groups each having its own specificities. For reasons of space, we will focus on

the case of unitary groups for which the results obtained are the most exhaustive.

Finally, we also refer to [17] for a very good introduction to this subject (dating

from 2013, this article unfortunately does not mention the most recent advances).

The arithmetic applications of these conjectures will not be discussed here

but let us cite recent works [28], [50] as examples of such applications.

We finish this introduction by giving two examples of previous results which

are special cases of the Gan-Gross-Prasad conjectures.

Branching law from U(𝑛 + 1) to U(𝑛). We begin by giving a classical example

of a branching law (due to H. Weyl [69]) constituting a particular case of local

conjectures. For any integer 𝑘 ≥ 1, we denote

U(𝑘) := {𝑔 ∈ GL𝑘(C) :
𝑡 �̄� 𝑔 = I𝑘}

the real compact unitary group of rank 𝑘. Let 𝑛 ≥ 1 be an integer. We have a

natural embedding

U(𝑛) ↩→ U(𝑛 + 1), 𝑔 ↦→
( 𝑔

1

)
.

Let 𝜋 be an irreducible complex representation of U(𝑛 + 1). Such a represen-

tation is necessarily of finite dimension (because U(𝑛 + 1) is compact) and we

are interested in the restriction of 𝜋 to U(𝑛). The explicit description of this

restriction, or rather of its decomposition into irreducible representations, what

are the consititues is called a branching law. Obviously, any comprehensible an-

swer to this problem requires knowing how to independently parameterize (or
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name) the irreducible representations (up to isomorphism) of U(𝑛) and U(𝑛+1).
Such a parametrization is precisely provided by the Cartan–Weyl highest weight

theory. In the cases that interest us this theory provides natural bĳections

Irr(U(𝑛 + 1)) ≃ {𝛼 = (𝛼1, . . . , 𝛼𝑛+1) ∈ Z𝑛+1

: 𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼𝑛+1}
𝜋𝛼 ↔ 𝛼

Irr(U(𝑛)) ≃ {𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ Z𝑛 : 𝛽1 ≥ 𝛽2 ≥ · · · ≥ 𝛽𝑛}

𝜎𝛽 ↔ 𝛽

where Irr(U(𝑛 + 1)) and Irr(U(𝑛)) are the set of isomorphism classes of irre-

ducible complex representations of U(𝑛 + 1) and U(𝑛), respectively. Using these

parametrizations, the solution to the initial problem is formulated as follows

(see [24] Chap. 8 for example): for all 𝑛 + 1-tuple 𝛼 = (𝛼1, . . . , 𝛼𝑛+1) ∈ Z𝑛+1
with

𝛼1 ≥ 𝛼2 ≥ . . . 𝛼𝑛+1, we have

𝜋𝛼 =
⊕

𝛽=(𝛽1 ,...,𝛽𝑛)∈Z𝑛
𝛼1≥𝛽1≥···≥𝛼𝑛≥𝛽𝑛≥𝛼𝑛+1

𝜎𝛽 .

In other words, for any pair of irreducible representations (𝜋𝛼 , 𝜎𝛽) ∈ Irr(U(𝑛 +
1)) × Irr(U(𝑛)) the space of intertwining maps

Hom
U(𝑛)(𝜋𝛼 , 𝜎𝛽)

has dimension at most 1 and is non-zero if and only if 𝛼 and 𝛽 satisfy the

branching condition 𝛼1 ≥ 𝛽1 ≥ · · · ≥ 𝛽𝑛 ≥ 𝛼𝑛+1. In this form the local Gan-

Gross-Prasad conjecture generalizes to pairs of real unitary groups U(𝑝, 𝑞) ⊂
U(𝑝 + 1, 𝑞) or 𝑝-adic U(𝑊) ⊂ U(𝑉) or more generally. More precisely, we will

see in the section 1.3 that for irreducible representations 𝜋 and 𝜎 (in a sense to

be specified) of U(𝑝 + 1, 𝑞) and U(𝑝, 𝑞) the intertwining space Hom
U(𝑝,𝑞)(𝜋, 𝜎)

is always of dimension at most one and the same is true if we consider 𝑝-adic

unitary groups. The local Gan-Gross-Prasad conjecture then gives (in almost

all cases) a necessary and sufficient condition, generalizing the above branching

relation, for this space to be nonzero.

Waldspurger’s formula for the Maass forms of level 1. Let us now state a particular

case of a result of Waldspurger [61] whose global conjectures give a generaliza-

tion. Let H = {𝑧 = 𝑥 + 𝑖𝑦 ∈ C : 𝑦 > 0} be the Poincaré upper half plane and

𝑓 : SL2(Z)\H → C a Maass eigenform of level 1. Let’s recall what this means:

𝑓 is a 𝐶∞ (and even real analytic) which is an eigenvector for the hyperbolic

Laplacian Δ := −𝑦2

(
𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)
with an eigenvalue 𝜆 (i.e. Δ 𝑓 = 𝜆 𝑓 ), invariant
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under the SL2(Z)-action (given by

(
𝑎 𝑏
𝑐 𝑑

)
𝑧 := 𝑎𝑧+𝑏

𝑐𝑧+𝑑 ), has a moderate growth in the

sense that | 𝑓 (𝑥 + 𝑖𝑦)| ≪ 𝐶𝑦𝑁 for some 𝑁 as 𝑦 →∞ and eigenform for all Hecke

operators 𝑇𝑝 for prime 𝑝, defined by

(𝑇𝑝 𝑓 )(𝑧) = 𝑓
( ( 𝑝

1

)
𝑧
)
+
𝑝−1∑
𝑢=0

𝑓
( (

1 𝑢
𝑝

)
𝑧
)
.

Since

(
1 1

1

)
𝑧 = 𝑧 + 1, such a function admits a Fourier expansion of the form

𝑓 (𝑥 + 𝑖𝑦) =
∑
𝑛∈Z

𝑎𝑛(𝑦)𝑒2𝜋𝑖𝑛𝑥 , 𝑥 + 𝑖𝑦 ∈ H.

Moreover, the differential equation satisfied by 𝑓 as well as the moderate growth

implies that the functions 𝑎𝑛(𝑦) are, for 𝑛 ≠ 0, of the form 𝑎𝑛(𝑦) = 𝑎𝑛
√
𝑦𝐾𝜈(2𝜋|𝑛 |𝑦)

for 𝑎𝑛 ∈ C and 𝐾𝜈 is the Bessel function of second kind with parameter 𝜈 ∈ C
satisfying 𝜆 = 1

4
− 𝜈2

. We assume that 𝑓 is even (i.e. 𝑓 (−�̄�) = 𝑓 (𝑧)) and cuspidal

(i.e. 𝑎0(𝑦) = 0). We then have 𝑎−𝑛 = 𝑎𝑛 for 𝑛 ≠ 0 and we define the complete

𝐿-function of 𝑓 by

𝐿(𝑠, 𝑓 ) = 𝜋−𝑠Γ
( 𝑠 + 𝜈

2

)
Γ

( 𝑠 − 𝜈
2

) ∞∑
𝑛=1

𝑎𝑛

𝑛𝑠
, ℜ(𝑠) ≫ 1.

For a quadratic Dirichlet character 𝜒 with 𝜒(−1) = −1 we also define a completed

𝐿-function twisted by 𝜒 by the following way

𝐿(𝑠, 𝑓 × 𝜒) = 𝜋−𝑠Γ

(
𝑠 − 1 + 𝜈

2

)
Γ

(
𝑠 − 1 − 𝜈

2

) ∞∑
𝑛=1

𝜒(𝑛)𝑎𝑛
𝑛𝑠

, ℜ(𝑠) ≫ 1.

Then 𝐿(𝑠, 𝑓 ) and 𝐿(𝑠, 𝑓 × 𝜒) admit analytic continuations to C and satisfy the

functional equations 𝐿(1 − 𝑠, 𝑓 ) = 𝐿(𝑠, 𝑓 ) and 𝐿(1 − 𝑠, 𝑓 × 𝜒) = 𝐿(𝑠, 𝑓 × 𝜒). Let

𝐹 be an imaginary quadratic extension of Q with fundamental discriminant 𝑑

(i.e. if 𝐹 = Q(
√
𝑑0) with 𝑑0 a square-free integer then 𝑑 = 𝑑0 if 𝑑0 is congruent

to 1 modulo 4, 4𝑑0 otherwise). We call Heegner point (relative to 𝐹) the unique

root 𝑧𝑑 in H of a quadratic equation of the form 𝑎𝑋2 + 𝑏𝑋 + 𝑐 with 𝑎, 𝑏, 𝑐 ∈ Z
satisfying 𝑏2 − 4𝑎𝑐 = 𝑑. We then have the following formula, which is a special

case of a result of Waldspurger [61]

©«
∑

𝑧𝑑/SL2(Z)
𝑓 (𝑧𝑑)ª®¬

2

=

√
|𝑑 |
2

𝐿

(
1

2

, 𝑓

)
𝐿

(
1

2

, 𝑓 × 𝜒𝑑

)
, (1)

where the sum is over the set of orbits of Heegner points under SL2(Z)-action

and 𝜒𝑑 denotes the unique quadratic Dirichlet character of conductor |𝑑 | with

𝜒𝑑(−1) = −1.
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The Local Conjectures

Applied to this particular case, the global Gan-Gross-Prasad conjecture pre-

dicts the equivalence∑
𝑧𝑑/SL2(Z)

𝑓 (𝑧𝑑) ≠ 0⇔ 𝐿

(
1

2

, 𝑓

)
𝐿

(
1

2

, 𝑓 × 𝜒

)
≠ 0,

while the refinement of the global conjecture by Ichino and Ikeda makes it

possible to derive formula (1) directly.

1 The Local Conjectures

1.1 The groups

Let𝐸/𝐹 be a quadratic extension of local fields of characteristic zero. We therefore

have either 𝐸/𝐹 = C/R or that 𝐸 and 𝐹 are finite extensions of the field of 𝑝-

adic numbers Q𝑝 for a certain prime number 𝑝 (Q𝑝 is the completion of Q by

the 𝑝-adic absolute value | · |𝑝 defined by |𝑝𝑘 𝑎
𝑏
|𝑝 = 𝑝−𝑘 for 𝑎 and 𝑏 integers

prime to 𝑝). We denote by 𝜎 the unique non-trivial element of the Galois group

Gal(𝐸/𝐹) and sgn𝐸/𝐹 the quadratic character of 𝐹 associated with the extension

𝐸/𝐹 by the class field theory (it is therefore the unique quadratic character with

kernel N𝐸/𝐹(𝐸×), the image of the norm map). Finally, we will fix two non-trivial

additive characters 𝜓0 : 𝐹 → S1
and 𝜓 : 𝐸 → S1

with the property that 𝜓 is

trivial on 𝐹.

Let𝑉 be a finite dimensional vector space of dimension 𝑛 over𝐸 and 𝜀 ∈ {±1}.
We assume 𝑉 is equipped with a non-degenerate 𝜀-hermitian form

⟨−,−⟩ : 𝑉 ×𝑉 → 𝐸.

By definition a 𝜀-hermitian form satisfies

⟨𝜆𝑣 + 𝜇𝑤, 𝑢⟩ = 𝜆⟨𝑣, 𝑢⟩ + 𝜇⟨𝑤, 𝑢⟩
⟨𝑣, 𝑢⟩ = 𝜀⟨𝑢, 𝑣⟩𝜎

for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and 𝜆, 𝜇 ∈ 𝐸. Depending on whether 𝜀 = 1 or −1 we call it

hermitian or skew-hermitian. Let𝑊 be a non-detenerate subspace of 𝑉 with

dim(𝑉) − dim(𝑊) =
{

1 if 𝜀 = 1

0 if 𝜀 = −1.

Let U(𝑉) ⊂ GL(𝑉) and U(𝑊) ⊂ GL(𝑊) be the algebraic subgroups (defined over

𝐹) of linear automorphisms of 𝑉 and𝑊 preserving the form ⟨−,−⟩. Then U(𝑉)
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1.2 The restriction problem

and U(𝑊) are unitary groups and we have a natural embeddign U(𝑊) ↩→ U(𝑉)
where U(𝑊) acts trivially on𝑊⊥ (which of dimension at most 1). In the following

we will (abusively) identify an algebraic group defined on 𝐹 with the group of

𝐹-points corresponding to it.

The following discussion also extends to the case where 𝐸 = 𝐹 × 𝐹 equipped

with the involution 𝜎(𝑥, 𝑦) = (𝑦, 𝑥), a case which it will be necessary to include

anyway when we will deal with the global conjecture. In such a situation, a non-

degenerate form ⟨−,−⟩ as above identifies 𝑉 and𝑊 to direct sums 𝑉0 ⊕ 𝑉∨
0

and

𝑊0 ⊕𝑊∨
0

where𝑊0 ⊂ 𝑉0 are the finite dimensional vector spaces over 𝐹 and𝑉∨
0

,

𝑊∨
0

denote their duals. We then have a natural identifications U(𝑉) ≃ GL(𝑉0)
and U(𝑊) ≃ GL(𝑊0).

In all cases, we put 𝐺 = U(𝑊) × U(𝑉), 𝐻 = U(𝑊) and we embed 𝐻 into 𝐺

diagonally. The groups 𝐻 and 𝐺 inherit from the field 𝐹 topologies which make

them Lie groups in the archimedean case (i.e. when 𝐹 = R) and locally profinite

groups in the non-archimedean case (i.e. when 𝐹 is a finite extension ofQ𝑝 ; recall

that a topological group is locally profinite if it has a basis of neighborhoods of

the identity element consist of compact subgroups).

1.2 The restriction problem

Let (𝜋,V) be a smooth and irreducible complex representation of𝐺. In the 𝑝-adic

case, this means that 𝜋 is a representation of 𝐺 on a C-vector space V (typically

of infinite dimension) all of whose vectors have a open stabilizer, irreducibility

is then an algebraic notion (i.e. no non-trivial subspace stable under 𝐺). In the

archimedean case, this means that V is a Fréchet space and that 𝜋 is a smooth

representation (in the 𝐶∞ sense), admissible (i.e. the irreducible representa-

tions of a maximal compact subgroup appear with finite multiplicities) on V

satisfying a certain condition of “moderate growth” (which was introduced by

Casselman and Wallach, see [11] and [67] Chap. 11); irreducibility is then a

topological notion (ie no non-trivial closed subspace stable by 𝐺). In any case,

such an irreducible representation decomposes as a tensor product 𝜋 = 𝜋𝑊 ⊠𝜋𝑉
where 𝜋𝑊 and 𝜋𝑉 are irreducible (smooth) representations of U(𝑊) and U(𝑉)
respectively (and where the tensor product is a topological tensor product in the

archimedean case). We will denote as Irr(𝐺) for the set of isomorphism classes

of smooth irreducible representations of 𝐺.

To define the restriction problem that will interest us, we must also introduce

a certain “small” representation 𝜈 of 𝐻. In the hermitian case (i.e. if 𝜀 = 1), 𝜈 is
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1.3 Multiplicity 1

the trivial representation that we will denote as 1 or simply C in the following.

In the skew-hermitian case (i.e. if 𝜀 = −1), we have an inclusion

U(𝑊) ⊂ Sp(Res𝐸/𝐹𝑊)

where Res𝐸/𝐹𝑊 denotes the restriction of the scalars from 𝐸 to 𝐹 of𝑊 equipped

with the symplectic form Tr𝐸/𝐹◦⟨−,−⟩ and Sp(Res𝐸/𝐹𝑊)denotes the correspond-

ing symplectic group. Let Mp(Res𝐸/𝐹𝑊) be the metaplectic group associated

with this symplectic space (it is a Z/2Z-extension of Sp(Res𝐸/𝐹𝑊)). The meta-

plectic covering splits over U(𝑊) but this splitting is not unique (because there

are non-trivial characters U(𝑊) → {±1}). We can, however, fix such a splitting

by choosing a character 𝜇 : 𝐸×→ S1
with 𝜇|𝐹× = sgn𝐸/𝐹 from now on. Let 𝜔𝜓0 ,𝑊

be the Weil representation of Mp(Res𝐸/𝐹𝑊) associated to the character 𝜓0 (c.f.

[43] Chap. 2. II). Then 𝜈 = 𝜔𝜓0 ,𝑊,𝜇 is the restriction of this Weil representation

to U(𝑊) via the splitting that we have just fixed.

For every case, the space of intertwining maps which is of our interest is the

following

Hom𝐻(𝜋, 𝜈) (2)

where implicitly we only consider the continuous maps in the archimedean case

(for the underlying Fréchet topologies). We denote 𝑚(𝜋) for the dimension of

this space

𝑚(𝜋) := dim Hom𝐻(𝜋, 𝜈).

Note that in the hermitian case we have identifications

Hom𝐻(𝜋, 𝜈) = Hom
U(𝑊)(𝜋𝑊 ⊠ 𝜋𝑉 ,C) = Hom

U(𝑊)(𝜋𝑉 ,𝜋∨𝑊 )

where 𝜋∨
𝑊

denotes the (smooth) contragredient representation of 𝜋𝑊 .

An element of space (2) is called a Bessel functional if 𝜀 = 1 and a Fourier-

Jacobi functional if 𝜀 = −1. We will then talk in parallel about the Bessel and

Fourier-Jacobi cases of the conjecture.

1.3 Multiplicity 1

The following theorem is due to Aizenbud–Gourevitch–Rallis–Schiffmann [2]

and Sun [57] in the 𝑝-adic case and to Sun–Zhu [58] in the archimedean case.

Theorem 1.1. For any smooth irreducible representations 𝜋 of 𝐺 we have

𝑚(𝜋) ≤ 1.
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1.4 Local Langlands correspondence for unitary groups

The local Gan–Gross–Prasad conjecture then essentially provides an answer

to the following simple question: when do we have 𝑚(𝜋) = 1? Just as for

the law of branching between real compact unitary groups discussed in the

introduction, any comprehensible answer to this question requires knowing

how to parameterize the (isomorphism classes of) irreducible representations

of 𝐺. Such a parameterization is precisely the object of the local Langlands

correspondence (for unitary groups) whose main properties we now recall.

1.4 Local Langlands correspondence for unitary groups

In this section we consider a hermitian or skew-hermitian space 𝑉 of finite

dimension 𝑛 over 𝐸 and we denote by U(𝑉) the corresponding unitary group.

1.4.1 Weil-Deligne group

Let 𝑊𝐹 be the Weil group of 𝐹. If 𝐹 is non-archimedean, we have the following

commutative diagram where each row are exact

1 𝐼𝐹 Gal(𝐹/𝐹) Gal(𝑘𝐹/𝑘𝐹) ≃ Ẑ 1

1 𝐼𝐹 𝑊𝐹 Z 1

where 𝐹 is an algebraic closure of 𝐹, 𝑘𝐹 is the residue field of 𝐹, the isomorphism

Gal(𝑘𝐹/𝑘𝐹) ≃ Ẑ correspond to the choice of the geometric Frobeinus Frob𝐹 as a

topological generator of Gal(𝑘𝐹/𝑘𝐹) and 𝐼𝐹 is the inertia subgroup (i.e. the kernel

of the arrow Gal(𝐹/𝐹) → Gal(𝑘𝐹/𝑘𝐹)). We then equip𝑊𝐹 with the topology that

make 𝐼𝐹 as an open subgroup (the topology induced from that of Gal(𝐹/𝐹)). If

𝐹 is archimedean, we have

𝑊𝐹 =

{
C× ∪ C× 𝑗 if 𝐹 = R

C× if 𝐹 = C,

where 𝑗2 = −1 and 𝑗𝑧 𝑗−1 = �̄� for all 𝑧 ∈ C×. The Weil-Deligne group WD𝐹 of 𝐹

is defined by

WD𝐹 =

{
𝑊𝐹 × SL2(C) if 𝐹 is non-archimedean

𝑊𝐹 if 𝐹 is archimedean.
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1.4 Local Langlands correspondence for unitary groups

1.4.2 Langlands parameters

Langlands associates with U(𝑉), and more generally with any connected reduc-

tive group over 𝐹, an 𝐿-group 𝐿
U(𝑉) that is a semi-direct product of a complex

reductive group
�
U(𝑉)with the Weil group𝑊𝐹:

𝐿
U(𝑉) = �

U(𝑉)⋊𝑊𝐹. Here, the 𝐿-

group is explicitly described as follows: we have
�
U(𝑉) = GL𝑛(C) and the action

of 𝑊𝐹 factors through 𝑊𝐹 →𝑊𝐹/𝑊𝐸 = Gal(𝐸/𝐹) with 𝜎 acts as 𝜎(𝑔) = 𝐽𝑡 𝑔−1𝐽−1
,

where

𝐽 =

©«
1

−1

. .
.

(−1)𝑛−1

ª®®®®®¬
.

A Langlands parameter for U(𝑉) is then a
�
U(𝑉)-conjugacy class of "admis-

sible" homomorphisms (i.e. satisfying certain properties of continuity, semi-

simplicity and algebraicity)

𝜙 : WD𝐹 → 𝐿
U(𝑉)

commuting with projections on 𝑊𝐹. We denote Φ(U(𝑉)) the set of Langlands

parameters for U(𝑉). For the unitary groups we have the following more explicit

description (c.f. [18] Theorem 8.1): the restriction to WD𝐸 induces a bĳection

between Φ(U(𝑉)) and the set of isomorphism classes of the complex continuous

semi-simple and algebraic representations on SL2(C) of dimension 𝑛 of WD𝐸

which are (−1)𝑛+1
-conjugate dual. Let’s recall what this last term means. Fix

𝑐 ∈ 𝑊𝐹\𝑊𝐸 maps to 𝜎. A representation 𝜑 : WD𝐸 → GL(𝑀) is called conjugate
dual if there exists a non-degenerate bilinear form

𝐵 : 𝑀 ×𝑀 → C

satisfying

𝐵(𝜑(𝜏)𝑢, 𝜑(𝑐𝜏𝑐−1)𝑣) = 𝐵(𝑢, 𝑣), ∀𝑢, 𝑣 ∈ 𝑀, 𝜏 ∈WD𝐸 .

It is equivalent to ask if 𝑀 is isomorphic to (𝑀𝑐)∨ where 𝑀𝑐
is the 𝑐-conjugate

of 𝑀 and (−)∨ is the contragredient representation. We further say that 𝜑 :

WD𝐸 → GL(𝑀) is 𝜀-conjugate-dual, where 𝜀 ∈ {±1}, if we can choose a bilinear

form satisfying the additional condition

𝐵(𝑢, 𝜑(𝑐2)𝑣) = 𝜀𝐵(𝑣, 𝑢), ∀𝑢, 𝑣 ∈ 𝑀.

We will call such a form an 𝜀-conjugate-dual form.

9



1.4 Local Langlands correspondence for unitary groups

To state the Langlands correspondence in its most complete version, it is

necessary to introduce for all 𝜙 ∈ Φ(U(𝑉)) a certain finite group 𝑆𝜙. The latter

is defined as the group of connected components of the centralizer in
�
U(𝑉) of

the image of 𝜙. If we identify 𝜙 with a (−1)𝑛+1
-conjugate-dual representation

𝜑 : WD𝐸 → GL(𝑀), we have the following more concrete description of 𝑆𝜙.

Let 𝐵 be a conjugate-dual form of sign (−1)𝑛+1
as above and denote Aut(𝜑, 𝐵)

the group of linear automorphisms of 𝑀 commutes with the image of 𝜑 and

preserve the form 𝐵. We then have (canonically)

𝑆𝜙 = Aut(𝜑, 𝐵)/Aut(𝜑, 𝐵)◦

where we denote as Aut(𝜑, 𝐵)◦ for the connected component of the identity

element. Moreover, this group is always abelian and isomorphic to a product of

finitely many copies of Z/2Z.

1.4.3 Pure inner forms

Following an idea from Vogan [60], the Langlands correspondence should be

formulated more simply if we consider several groups at the same time. More

precisely, we must take account the pure inner forms of U(𝑉). These forms are

naturally parameterized by the Galois cohomology set H
1(𝐹,U(𝑉)) and all ad-

mit the same 𝐿-group as U(𝑉) (so that a Langlands parameter for U(𝑉) can also

be considered as Langlands parameter of all its pure inner forms). For unitary

groups we know how to describe the pure inner forms explicitly: H
1(𝐹,U(𝑉))

naturally classifies the isomorphism classes of (skew-)Hermitian spaces of di-

mension 𝑛 and the pure inner forms of U(𝑉) are then the unitary groups of the

latter spaces. For a class 𝛼 ∈ H
1(𝐹,U(𝑉)), we denote 𝑉𝛼 the (skew-)hermitian

space it determines and U(𝑉𝛼) the corresponding pure inner form.

In the non-archimedean case, and for 𝑛 ≠ 0, there exist exactly two isomor-

phism classes of (skew-)hermitian spaces of dimension 𝑛, which can be distin-

guished by their discriminants, and therefore as many pure inner forms. In the

archimedean case, there are 𝑛 + 1 pure interior forms of U(𝑉) corresponding to

U(𝑝, 𝑞) for 𝑝 + 𝑞 = 𝑛. Note that two distinct pure inner forms of U(𝑉) can be

isomorphic (e.g. U(𝑝, 𝑞) ≃ U(𝑞, 𝑝)) but from the point of view of the Langlands

correspondence these must be considered separately.

10



1.4 Local Langlands correspondence for unitary groups

1.4.4 The correspondence

We can now state the local Langlands correspondence for U(𝑉) (and its pure

inner forms) in the following informal way. For all 𝛼 ∈ H
1(𝐹,U(𝑉)), there

should exist a partition

Irr(U(𝑉𝛼)) =
⊔

𝜙∈Φ(U(𝑉))
ΠU(𝑉𝛼)(𝜙)

into finite (possibly empty) subsets called 𝐿-packets and for all 𝜙 ∈ Φ(U(𝑉)) there

should exists a bĳection ⊔
𝛼∈H1(𝐹,U(𝑉))

ΠU(𝑉𝛼)(𝜙) ≃ 𝑆𝜙

𝜋(𝜑, 𝜒) ←[ 𝜒
(3)

where 𝑆𝜙 is the group of characters of the finite abelian group 𝑆𝜙. This data must

of course satisfy a certain number of properties. In fact, the famous endoscopic
relations, which we will not explain here, characterize, if it exists, the local Lang-

lands correspondence for the unitary groups from the known correspondence

([28, 32, 53]), for linear groups. These endoscopic relations depend however

on a certain choice corresponding to the normalization of transfer factors. The

composition of the 𝐿-packets does not depend on this choice but the bĳection

(3) depends on it. We will give more details about the choices involved in this

normalization in section 1.4.7.

1.4.5 Status

In the archimedean case, the local correspondence was constructed by Langlands

himself [39] for all real reductive groups from the results of Harish-Chandra.

This correspondence verifies the expected endoscopic relations follows from the

work of Shelstad [54, 55, 56] and Mezo [42] (see also [13] for the case of unitary

groups).

In the non-archimedean case, the correspondence was obtained much more

recently by Mok [47] for quasi-split unitary groups and then by Kaletha–Minguez–

Shin–White [37] for all unitary groups following the founding work of Arthur

[3] on symplectic and orthogonal groups. Until recently these results were still

conditional on the stabilization of the twisted trace formula now established

in full generality by Waldspurger and Moeglin–Waldspurger in an impressive

series of papers [44].

11



1.4 Local Langlands correspondence for unitary groups

1.4.6 𝐿-functions and 𝜀-factors

For a given Langlands parameter 𝜙 : WD𝐹 → 𝐿
U(𝑉) we can associate certain

arithmetic invariants with it. More precisely, for any algebraic representation

𝜌 :
𝐿
U(𝑉) → GL(𝑀) where 𝑀 is a finite dimensional complex vector space,

the composition 𝜌 ◦ 𝜙 is a representation of the Weil-Deligne group WD𝐹 to

which we can associate a local 𝐿-function 𝐿(𝑠, 𝜌 ◦ 𝜙) = 𝐿(𝑠, 𝜌, 𝜙) and a local 𝜀

factor 𝜀(𝑠, 𝜌 ◦ 𝜙,𝜓0) = 𝜀(𝑠, 𝜙, 𝜌,𝜓0) which depends on the additive character

𝜓0 : 𝐹 → C×. The local 𝐿-functions are meromorphic functions on C without

zero while the local epsilon factors are invertible holomorphic functions on C.

In the case where 𝐹 is non-archimedean and 𝜌 ◦ 𝜙 is trivial on the factor SL2(C)
the 𝐿-function is defined by

𝐿(𝑠, 𝜙, 𝜌) = 1

det(1 − 𝑞−𝑠(𝜌 ◦ 𝜙)(Frob𝐹)|𝑀𝐼𝐹 )
,

where we denote 𝑞 for the cardinality of the residue field of 𝐹, 𝑀 𝐼𝐹
the subspace

of 𝐼𝐹-invarians and Frob𝐹 a (geometric) Frobenius in𝑊𝐹. We have an analogous

formula in the general case if 𝐹 is non-archimedean (cf. [59] 4.1.6) and if 𝐹 is

archimedean the local 𝐿 factors are explicit products of gamma functions and

powers of 𝜋 and 2 (cf. [59] §3 ). Local epsilon factors are much more subtle

invariants. Indeed, these must satisfy a certain number of simple properties

characterizing them only but their existence is a difficult theorem due indepen-

dently to Langlands and Deligne ([14]).

Let us mention here a property of these factors that we will need. Let

𝜑 : WD𝐸 → GL(𝑀) be a (−1)-conjugate-dual representation of the Weil-Deligne

group of𝐸. Then, 𝜀(1
2
, 𝜑,𝜓) ∈ {±1}where we recall that the character𝜓 : 𝐸→ S1

is trivial on 𝐹. Moreover, this epsilon factor depends only on the N(𝐸×)-orbit of

𝜓 and in fact does not depend on 𝜓 at all if dim(𝜑) is even.

1.4.7 Whittaker datum and normalization of the correspondence

As explained in 1.4.4, the bĳection (3) depends on a choice allowing to normalize

certain transfer factors. According to [38], such a choice can be made by fixing a

Whittaker datum of a pure inner form of U(𝑉). More precisely, we first choose

a quasi-split pure inner form U(𝑉𝛼) of U(𝑉) having a Borel subgroup 𝐵 ⊂ U(𝑉𝛼)
defined on 𝐹. Such a group exists and even it means that by replacing 𝑉 by 𝑉𝛼

(which does not modify the family of pure inner forms), we can assume that we

have chosen U(𝑉) (which we therefore assume quasi-split). A Whittaker data on

12
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U(𝑉) is then a conjugacy class of pairs (𝑁, 𝜃) where 𝑁 is the unipotent radical

of a Borel subgroup 𝐵 = 𝑇𝑁 defined over 𝐹 and 𝜃 : 𝑁 → S1
is a generic character

whose stabilizer in 𝑇 equals to the center of U(𝑉). There is only one conjugacy

class of Whittaker data if 𝑛 = dim(𝑉) is odd while if 𝑛 is even there are two

and one can be fixed from the character 𝜓 : 𝐸/𝐹 → S1
in hermitian case and

𝜓0 : 𝐹→ S1
in the skew-hermitian case.

1.4.8 Generic, tempered, and discrete 𝐿-packets

A Langlands parameter 𝜙 : WD𝐹 → 𝐿
U(𝑉) is said to be generic if 𝐿(𝑠, 𝜙,Ad) has

no pole at 𝑠 = 1 where Ad denotes the adjoint representation of
𝐿
U(𝑉) on its Lie

algebra. The corresponding L-packet ΠU(𝑉)(𝜙) then contains one and only one

representation𝜋 admitting a Whittaker model for (𝑁, 𝜃) i.e. Hom𝑁 (𝜋, 𝜃) ≠ 0 (we

then say that𝜋 is generic with respect to (𝑁, 𝜃)) and moreover this representation

corresponds via the bĳection (3) to the trivial character of 𝑆𝜙.

A Langlands parameter 𝜙 : WD𝐹 → 𝐿
U(𝑉) is tempered if the projection of the

image of𝑊𝐹 onto
�
U(𝑉) is relatively compact. A tempered parameter is automat-

ically generic and the corresponding 𝐿-packet ΠU(𝑉)(𝜙) only contains tempered
representations, i.e. representations which weakly contained in 𝐿2(U(𝑉)) (there

is also a characterization of tempered representations by a condition of growth of

coefficients). In fact, one can reconstruct the Langlands correspondence for U(𝑉)
from the correspondence restricted to the tempered parameters of U(𝑉) and its

Levi subgroups. This follows from the Langlands classification which makes it

possible to obtain all the irreducible representations of a reductive group from

the tempered representations of its Levi subgroups by a classical process called

parabolic induction.

Finally, a Langlands parameter 𝜙 : WD𝐹 → 𝐿
U(𝑉) is said to be discrete if the

centralizer of its image in
�
U(𝑉) is finite. A discrete parameter is automatically

tempered (therefore also generic) and determines an 𝐿-packet of representations

of the discrete series which appear as submodules of 𝐿2(U(𝑉)).

1.5 The conjecture

We return to the situation introduced in 1.1 and 1.2. Let us call pure inner form of

(𝐺, 𝐻) a pair (𝐺𝛼 , 𝐻𝛼) obtained in the following way. Let 𝛼 ∈ H
1(𝐹, 𝐻) and 𝑊𝛼

the corresponding (skew-)hermitian space. We then set 𝑉𝛼 = 𝑊𝛼 ⊕⊥ 𝐿, where

𝐿 is a space such as 𝑉 = 𝑊 ⊕⊥ 𝐿, 𝐻 = U(𝑊𝛼) and 𝐺𝛼 = U(𝑉𝛼) × U(𝑊𝛼). We

again have an injection 𝐻𝛼 ↩→ 𝐺𝛼 and we define as in section 1.2 a “small”
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representation 𝜈𝛼 of𝐻𝛼 (which depends, like 𝜈, in the Fourier–Jacobi case on the

choices of 𝜓0 and 𝜇) as well as a multiplicity function 𝜋 ∈ Irr(𝐺𝛼) ↦→ 𝑚(𝜋) by

𝑚(𝜋) = dim Hom𝐻𝛼(𝜋, 𝜈𝛼).

Note that 𝐺𝛼 is then a pure inner form of 𝐺 but that in general we do not obtain

all the pure inner forms of𝐺 in this way. The pure inner forms of𝐺 thus obtained

will be called relevant. There always happens to be a relevant pure inner form

which is quasi-split. By changing our initial pair if needed, we will therefore

assume that 𝐺 itself is quasi-split. Then we fix the Langlands correspondence

for U(𝑉) and U(𝑊) (and their pure inner forms) as in 1.4.7.

Let 𝜙 : WD𝐹 → 𝐿
U(𝑉) and 𝜙′ : WD𝐹 → 𝐿

U(𝑊) be two Langlands parameters

identified with complex representations 𝜑 : WD𝐸 → GL(𝑀) and 𝜑′ : WD𝐸 →
GL(𝑁) of dimensions 𝑑𝑉 = dim(𝑉) and 𝑑𝑊 = dim(𝑊) and which are (−1)𝑑𝑉+1

-

and (−1)𝑑𝑊+1
-conjugate-dual respectively. According to Gan, Gross and Prasad,

we define two characteristics

𝜒𝜙,𝜙′ : 𝑆𝜙 → {±1} and 𝜒𝜙′,𝜙 : 𝑆𝜙′ → {±1}

as follows. Fix non-degenerate forms 𝐵 and 𝐵′ on 𝑀 and 𝑁 which are (−1)𝑑𝑉+1

and (−1)𝑑𝑊+1
-conjugate-dual respectively so we have identifications

𝑆𝜙 = Aut(𝜑, 𝐵)/Aut(𝜑, 𝐵)◦ and 𝑆𝜙′ = Aut(𝜑′, 𝐵)/Aut(𝜑′, 𝐵)◦.

Let 𝑠 ∈ 𝑆𝜙 and 𝑠′ ∈ 𝑆𝜙′, regarding as elements of Aut(𝜑, 𝐵) and Aut(𝜑′, 𝐵′)
respectively. In the Bessel case (i.e. 𝜀 = 1), we set

𝜒𝜙,𝜙′(𝑠) = 𝜀

(
1

2

, 𝜑𝑠=−1 ⊗ 𝜑′,𝜓−2𝛿

)
and 𝜒𝜙′,𝜙(𝑠′) = 𝜀

(
1

2

, 𝜑 ⊗ (𝜑′)𝑠′=−1,𝜓−2𝛿

)
where 𝜑𝑠=−1

(resp. (𝜑′)𝑠′=−1
) denote the subrepresentation of 𝜑 (resp. 𝜑′) where

𝑠 (resp. 𝑠′) acts as −1, 𝛿 is the discriminant of the unique odd-dimensional

hermidian space in the pair (𝑊,𝑉) and 𝜓−2𝛿(𝑥) = 𝜓(−2𝛿𝑥). In the Fourier–

Jacobi case (i.e. 𝜀 = −1), we set

𝜒𝜙,𝜙′(𝑠) = 𝜀

(
1

2

, 𝜑𝑠=−1 ⊗ 𝜑′ ⊗ 𝜇−1,𝜓𝜆

)
and 𝜒𝜙′,𝜙(𝑠) = 𝜀

(
1

2

, 𝜑 ⊗ (𝜑′)𝑠=−1 ⊗ 𝜇−1,𝜓𝜆

)
where 𝜇 is the multiplicative character of 𝐸× that we fixed to define the repre-

sentation 𝜈, 𝜆 = 1 in the case where dim(𝑉) is even and 𝜆 is the unique element

of 𝐹× such that 𝜓(𝜆𝑥) = 𝜓0(Tr𝐸/𝐹(𝑒𝑥)) for all 𝑥 ∈ 𝐸 with 𝑒 the discriminant of the

skew-hermitian space 𝑉 in the case where dim(𝑉) is odd. In any case, we show

that the result does not depend on the choices of representatives of 𝑠 and 𝑠′ and

thus we have defined the characters of 𝑆𝜙 and 𝑆𝜙′ ([18] Theorem 6.1).
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Conjecture 1.1 (Gan–Gross–Prasad). Let 𝜙 and 𝜙′ be generic Langlands param-

eters. Then

1. We have

∑
𝛼∈H1(𝐹,𝐻)

∑
𝜋∈Π𝐺𝛼 (𝜙×𝜙′)𝑚(𝜋) = 1.

2. More precisely, for all pair of charaters (𝜒, 𝜒′) ∈ 𝑆𝜙×𝑆𝜙′ such that𝜋(𝜙, 𝜒)⊠
𝜋(𝜙′, 𝜒′) is a representation of a pure inner form of 𝐺, we have

𝑚(𝜋(𝜙, 𝜒) ⊠ 𝜋(𝜙′, 𝜒′)) = 1⇔ 𝜒 = 𝜒𝜙,𝜙′ and 𝜒′ = 𝜒𝜙′,𝜙 .

1.6 Status

1.6.1 Bessel case

In a series of four seminal papers [62, 63, 64, 65], Waldspurger established the

analogue of conjecture 1.1 for special orthogonal groups (an analogue which

exists only in the Bessel case) when 𝐹 is 𝑝-adic and when 𝜙 and 𝜙′ are tem-

pered Langlands parameters. This result was then extended by Moeglin and

Waldspurger [46] to all generic parameters. In my thesis [6, 7, 9] I adapted

Waldspurger’s method in order to prove conjecture 1.1 in the Bessel case and for

tempered Langlands parameters of 𝑝-adic unitary groups. The extension to all

generic 𝐿-packets was done by Gan and Ichino in [20] (section 9.3) crucially using

a result of Heiermann [31] which generalizes part of the Moeglin–Waldspurger

argument. Still following the method initiated by Waldspurger, I established

in [8] the property of multiplicity one in 𝐿-packets (i.e. the 1 of conjecture 1.1)

still for tempered parameters and in the Bessel case but this time for real uni-

tary groups. The preliminary work carried out in [8] should make it possible

to completely adapt Waldspurger’s method for archimedean fields and thus to

obtain a complete proof of the conjecture in the Bessel case (for unitary groups).

Unfortunately, the sequel to [8] has not yet been written. Finally, by a completely

different method using theta correspondence and specific to the archimedean

case, Hongyu He obtained in [30] a proof of the conjecture in the Bessel case for

the discrete Langlands parameters of real unitary groups.

1.6.2 Fourier-Jacobi case

For 𝑝-adic fields and shortly after the proof of the conjecture in the Bessel case,

Gan and Ichino [20] showed how, by using the local theta correspondence, one

could deduce the conjecture in the Fourier–Jacobi case. This method was later

adapted by Hiraku Atobe [4] to establish the analogue of conjecture 1.1 for
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symplectic/metaplectic groups (analogue that only exists in the Fourier–Jacobi

case) over a 𝑝-adic field. On the other hand, the Fourier–Jacobi case of the

conjecture remains completely open for archimedean fields.

1.7 Brief overview of proofs

1.7.1 The Bessel case

We present here a rapid overview of the method initiated by Waldspurger, and

adapted by the author to the case of unitary groups, to prove the local conjecture

in the Bessel case for tempered representations. This method is based on an

integral formula calculating the multiplicity 𝑚(𝜋) when 𝜋 is tempered. Let us

first present this formula in the simplest case, i.e. when the groups 𝐺 and 𝐻 are

compact (this can happen at any rank for the real groups but over the 𝑝-adic fields

it implies dim(𝑉) ≤ 2). The representation 𝜋 is then of finite dimension and has

a character 𝜃𝜋 defined by 𝜃𝜋(𝑔) = Tr(𝜋(𝑔)) for all 𝑔 ∈ 𝐺. By the orthogonality

relations between characters we immediately get

𝑚(𝜋) =
∫
𝐻

𝜃𝜋(ℎ)dℎ

where dℎ is the unique Haar measure on 𝐻 of total mass 1. By the Weyl’s

integration formula, this can be written as

𝑚(𝜋) =
∑

𝑇∈T(𝐻)
|𝑊(𝐻,𝑇)|−1

∫
𝑇

𝐷𝐻(𝑡)𝜃𝜋(𝑡)d𝑡 (4)

where T(𝐻) denotes a set of representatives of the conjugacy classes of maximal

tori in 𝐻, 𝑊(𝐻,𝑇) is the Weyl group 𝑁𝐻(𝑇)/𝑇 where 𝑁𝐻(𝑇) is the normalizer

of 𝑇 in 𝐻 and 𝐷𝐻(𝑡) = | det(1 −Ad(𝑡))𝔥/𝔱 | is the Weyl discriminant (with 𝔥 and 𝔱

the Lie algebras of 𝐻 and 𝑇 respectively). In the case of real compact groups, we

know explicit formulas (also due to Weyl) for the characters 𝜃𝜋 and the above

formula then makes it possible to find directly the branching law presented in

the introduction (note that in this case T(𝐻) is reduced to one element).

Waldspurger’s method makes it possible to generalize formula (4) to groups

that are not necessarily compact. Several difficulties then arise. First of all, the

character 𝜃𝜋 no longer has any meaning a priori since the representation 𝜋 is

in general of infinite dimension and the operators 𝜋(𝑔), 𝑔 ∈ 𝐺 are not trace-

class. A very deep result of Harish-Chandra nevertheless allows us to define

such a character 𝜃𝜋(𝑔). More precisely, Harish-Chandra first defines a character
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distribution 𝑓 ∈ 𝐶∞𝑐 (𝐺) ↦→ 𝜃𝜋( 𝑓 ) := Tr(𝜋( 𝑓 )) where 𝜋( 𝑓 ) =
∫
𝐺
𝑓 (𝑔)𝜋(𝑔)d𝑔 (we

show without too much difficulty that these operators are of trace-class; they

even have finite rank for 𝑝-adic groups) and proves that this distribution is

representable by a locally integrable function 𝜃𝜋 on 𝐺 with nice properties. In

particular, this function is smooth (i.e. locally constant in the 𝑝-adic case) on

the open locus 𝐺reg of regular semi-simple elements and Harish-Chandra even

described the singularities that 𝜃𝜋 can have in the neighborhood of the singular

elements. Since intersections of maximal tori of 𝐻 with 𝐺reg are open and

have negligible complements, the formula (4) makes sense in general (modulo

convergence issue). However, the Waldspurger’s formula differs from (4) by

two aspects. First, not all maximal tori contribute to it, but only those that are

compact (which essentially settles questions of convergence) Secondly, certain

tori are not maximal (but still compact). This last property implies in particular

the existence of non-negligible contributions from certain singular conjugacy

classes which requires defining a regularization 𝑥 ↦→ 𝑐𝜋(𝑥) of the character 𝜃𝜋

at these points. When dim(𝑉) = 2 (so that dim(𝑊) = 1 and 𝐻 is itself a torus)

but when the group 𝐺 is not compact the formula has the following form

𝑚(𝜋) =
∫
𝐻

𝜃𝜋(𝑡)d𝑡 + 𝑐𝜋(1). (5)

Thus, here the only singular contribution comes from the trivial conjugacy class.

We refer to the introductions of [63] (for the case of orthogonal groups) and [9]

for more details on the formula in the general case. Now let’s explain briefly

how we can deduce from formulas (4) and (5) the first part of conjecture 1.1

in the case of dim(𝑉) = 2 and 𝐹 is 𝑝-adic. More precisely, we denote (𝐺𝑖 , 𝐻𝑖)
for the unique pure inner form with quasi-split 𝐺𝑖 (hence non-compact) and

(𝐺𝑎 , 𝐻𝑎) the only other pure inner form which is, in contrary, compact. Let

𝜙 : WD𝐹 → 𝐿𝐺𝑖 =
𝐿𝐺𝑎 be a tempered Langlands parameter. Then each of the

𝐿-packets Π𝐺𝑖 (𝜙) and Π𝐺𝑎 (𝜙) can contain at most two elements (and Π𝐺𝑎 (𝜙)
can be empty). Let 𝜃𝜙,♮ =

∑
𝜋∈Π𝐺♮ (𝜙) 𝜃𝜋 for ♮ ∈ {𝑖 , 𝑎}. By (4) and (5), we

have

∑
𝜋∈Π𝐺𝑎 (𝜙)𝑚(𝜋) =

∫
𝐻𝑎

𝜃𝜙,𝑎(ℎ)dℎ and

∑
𝜋∈Π𝐺𝑖 (𝜙)𝑚(𝜋) =

∫
𝐻𝑖

𝜃𝜙,𝑖(ℎ)dℎ+𝑐𝜙,𝑖(1)
where 𝑐𝜙,𝑖(1) is a certain regularization of 𝜃𝜙,𝑖 at 1. Since the groups 𝐻𝑖 and 𝐻𝑎

are unitary groups of rank one, we have a natural isomorphism 𝐻𝑖 ≃ 𝐻𝑎 and

furthermore via this isomorphism we have the equality 𝜃𝜙,𝑖(ℎ) = −𝜃𝜙,𝑎(ℎ) (this

is the simplest example of the famous endoscopic relations). By summing the two

formulas, we therefore obtain ∑
𝜋∈Π𝐺𝑖 (𝜙)∪Π𝐺𝑎 (𝜙)

𝑚(𝜋) = 𝑐𝜙,𝑖(1).
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1.7 Brief overview of proofs

Finally, according to a result of Rodier [52] and the definition of 𝑐𝜙,𝑖(1) (which we

have not given here), this last term counts the number of generic representations

in the 𝐿-packet Π𝐺𝑖 (𝜙) corresponding to a certain Whittaker datum. Since 𝜙

is generic this number becomes 1, which concludes the proof. The same idea

(slightly more elaborate) leads to a proof for genera ranks of the first part of

conjecture 1.1 from Waldspurger’s formula.

To obtain the second part of the conjecture, Waldspurger introduces a second

essential ingredient: an integral formula, analogous to the previous one, express-

ing certain epsilon factors of pairs. In the context of the conjecture for unitary

groups, this formula expresses more precisely a factor of the form 𝜀(1
2
,𝜋×𝜋′,𝜓),

where 𝜋 and 𝜋′ are tempered irreducible representations of GL𝑘(𝐸) and GL𝑙(𝐸)
which are conjugate-dual (i.e. 𝜋𝜎 ≃ 𝜋∨ and (𝜋′)𝜎 ≃ (𝜋′)∨) with 𝑘 . 𝑙mod 2 as a

function of “twisted” characters associated with 𝜋 and 𝜋′ (more precisely the re-

striction to the connected component of the identity of the extension of characters

of 𝜋 and 𝜋′ to GL
+
𝑖 (𝐸) = GL𝑖(𝐸) ⋊ ⟨𝜃𝑖⟩ where 𝜃𝑖𝑔𝜃−1

𝑖
= 𝑡(𝑔𝜎)−1

for 𝑖 = 𝑘, 𝑙). Here

𝜀(𝑠,𝜋×𝜋′,𝜓) is a certain epsilon factor defined by Jacquet, Piatetski-Shapiro, and

Shalika [35] and which is equal to the Artin’s epsilon factor 𝜀(𝑠, 𝜙⊗ 𝜙′,𝜓)where

𝜙 : WD𝐸 → GL𝑘(C) and 𝜙′ : WD𝐸 → GL𝑙(C) are the Langlands parameters

of 𝜋 and 𝜋′ obtained via the local Langlands correspondence for linear groups

(proved by Harris-Taylor [28], Henniart [32] and more recently Scholze [53]; this

compatibility with the 𝜀 factors of pairs is moreover an essential ingredient to

characterize this correspondence). We will not give more details on this formula

(nor on its proof) and we will simply refer the reader to the introductions of [64]

and [6] for more details. This formula for the epsilon factors of pairs has not yet

been proved in the archimedean case and is the missing part to finish the proof

of conjecture 1.1 in general.

Finally, the last part of the proof for tempered representations [65], [7] consists

of relating the two previous formulas, for the multiplicity 𝑚(𝜋) and for the

epsilon factors of pairs, via the endoscopic relations between characters. Indeed,

these relations which, let us recall, characterize the local correspondence for

unitary groups, essentially make it possible to express the character of any

tempered representation of 𝐺 from “twisted” characters on linear groups as

above. Then we come across, quite miraculously, an expression of 𝑚(𝜋), for a

tempered representation 𝜋 of 𝐺, in terms of epsilon factors of pairs which is

exactly the formula predicted by the Gan–Gross–Prasad conjecture.
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1.7 Brief overview of proofs

1.7.2 The Fourier–Jacobi case

We explain here the outline of the proof by Gan and Ichino [20] of conjecture 1.1

in the Fourier–Jacobi case. For this, we need to make some reminders about the

local theta correspondence for unitary groups. For simplicity, we will restrict

ourselves to the case of tempered representations.

Recall that a reductive dual pair of a symplectic group Sp(W) is a pair (U1,U2)
of reductive subgroups of Sp(W)which are centralizers of each other. Let𝑊𝑛 be

an 𝑛-dimensional skew-hermitian space, 𝑉𝑛+1 an (𝑛 + 1)-dimensional hermitian

space, 𝑉𝑛 ⊂ 𝑉𝑛+1 a non-degenerate hyperplane and 𝑉1 the orthogonal comple-

ment of 𝑉𝑛 in 𝑉𝑛+1. Then in the symplectic group Sp(Res𝐸/𝐹𝑊𝑛 ⊗ 𝑉𝑛+1)we have

the following two dual reductive pairs

(U(𝑊𝑛),U(𝑉𝑛+1)) and (U(𝑊𝑛) ×U(𝑊𝑛),U(𝑉𝑛) ×U(𝑉1))

where the action of the first pair on 𝑊𝑛 ⊗ 𝑉𝑛+1 is the obvious action while the

action of the second pair respects the decomposition 𝑊𝑛 ⊗ 𝑉𝑛+1 = (𝑊𝑛 ⊗ 𝑉𝑛) ⊕
(𝑊𝑛 ⊗ 𝑉1). Moreover, we have inclusions U(𝑊𝑛) ⊂ U(𝑊𝑛) ×U(𝑊𝑛) and U(𝑉𝑛) ×
U(𝑉1) ⊂ U(𝑉𝑛+1). We summarize the situation in the form of the following

diagram, called “see-saw” diagram (or scissor diagram),

U(𝑊𝑛) ×U(𝑊𝑛) U(𝑉𝑛+1)

U(𝑊𝑛) U(𝑉𝑛) ×U(𝑉1).

(6)

The character 𝜇 : 𝐸× → C× which we have fixed, and whose restriction to

𝐹× coincides with sgn𝐸/𝐹, makes it possible to identify all these groups in the

metaplectic covering Mp(Res𝐸/𝐹𝑊𝑛 ⊗ 𝑉𝑛+1). Let 𝜔𝜓0 ,𝑊𝑛 ,𝑉𝑛+1
be the Weil repre-

sentation of Mp(Res𝐸/𝐹𝑊𝑛 ⊗ 𝑉𝑛+1) associated with the additive character 𝜓0.

For any irreducible representation 𝜎 of U(𝑊𝑛), the maximal 𝜎-isotypic quo-

tient of 𝜔𝜓0 ,𝑊𝑛 ,𝑉𝑛+1
is of the form 𝜎 ⊠ Θ𝑊𝑛 ,𝑉𝑛+1

(𝜎) where Θ𝑊𝑛 ,𝑉𝑛+1
(𝜎) is a rep-

resentation of U(𝑉𝑛+1) which always happens to be of finite length. More-

over, if this representation is non zero then it admits a unique irreducible

quotient according to [62] and [16] (this is the famous “Howe’s duality con-

jecture”). Let’s denote this irreducible quotient as 𝜃𝑊𝑛 ,𝑉𝑛+1
(𝜎) when it exists.

Then, the partially defined map 𝜎 ↦→ 𝜃𝑊𝑛 ,𝑉𝑛+1
(𝜎) gives a bĳection between

a part of Irr(U(𝑊𝑛)) and a part of Irr(U(𝑉𝑛+1)): this is what called the local

theta correspondence. We define in the same way a map 𝜋 ∈ Irr(U(𝑉𝑛)) ↦→
Θ𝑊𝑛 ,𝑉𝑛 (𝜋) with values in the representations of finite lengths of U(𝑊𝑛) and
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The Global Conjectures

a partially defined map 𝜋 ∈ Irr(U(𝑉𝑛)) ↦→ 𝜃𝑊𝑛 ,𝑉𝑛 (𝜋) ∈ Irr(U(𝑊𝑛)) by real-

izing (U(𝑉𝑛),U(𝑊𝑛)) as a dual reductive pair in Sp(Res𝐸/𝐹𝑉𝑛 ⊗ 𝑊𝑛) (also in

the metaplectic cover as before). The restriction of the Weil representation

𝜔𝜓0 ,𝑊𝑛 ,𝑉𝑛+1
to Mp(Res𝐸/𝐹𝑊𝑛 ⊗ 𝑉𝑛) × Mp(Res𝐸/𝐹𝑊𝑛 ⊗ 𝑉1) via the natural mor-

phism Mp(Res𝐸/𝐹𝑊𝑛 ⊗ 𝑉𝑛) × Mp(Res𝐸/𝐹𝑊𝑛 ⊗ 𝑉1) → Mp(Res𝐸/𝐹𝑊𝑛 ⊗ 𝑉𝑛+1) is

isomorphic to the tensor product 𝜔𝜓0 ,𝑊𝑛 ,𝑉𝑛 ⊠𝜔𝜓0 ,𝑊𝑛 ,𝑉1
. It follows by the diagram

(6) that there is a natural isomorphism (the “see-saw” identity)

Hom
U(𝑊𝑛)(Θ𝑊𝑛 ,𝑉𝑛 (𝜋) ⊗ 𝜔𝜓0 ,𝑊𝑛 ,𝑉1

, 𝜎) ≃ Hom
U(𝑉𝑛)(Θ𝑊𝑛 ,𝑉𝑛+1

(𝜎),𝜋) (7)

for all representations 𝜋 ∈ Irr(U(𝑉𝑛)) and 𝜎 ∈ Irr(U(𝑊𝑛)). The contragredient

of the Weil representation 𝜔𝜓0 ,𝑊𝑛 ,𝑉1
is 𝜔𝜓−1

0
,𝑊𝑛 ,𝑉1

, the space on the left hand

side is essentially the space of Fourier–Jacobi functionals on the representation

Θ𝑊𝑛 ,𝑉𝑛 (𝜋)⊠𝜎∨ of the group U(𝑊𝑛)×U(𝑊𝑛)while the space on the right hand side

is the space of the Bessel functionals on the representation 𝜋∨ ⊠ Θ𝑊𝑛 ,𝑉𝑛+1
(𝜎) of

the group U(𝑉𝑛) ×U(𝑉𝑛+1). Thus the identity (7) relates the Bessel and Fourier–

Jacobi cases of the conjecture and to deduce the Fourier-Jacobi case from the

Bessel case, at least for tempered representations, it is roughly sufficient to

– Show that for tempered𝜋 and 𝜎 the representationsΘ𝑊𝑛 ,𝑉𝑛 (𝜋) andΘ𝑊𝑛 ,𝑉𝑛+1
(𝜎)

are zero or irreducible (in which case they coincide with 𝜃𝑊𝑛 ,𝑉𝑛 (𝜋) and

𝜃𝑊𝑛 ,𝑉𝑛+1
(𝜎) respectively).

– Explain the local theta correspondences 𝜋 ↦→ 𝜃𝑊𝑛 ,𝑉𝑛 (𝜋) and 𝜎 ↦→ 𝜃𝑊𝑛 ,𝑉𝑛+1
(𝜎)

in terms of the local Langlands correspondence.

– Show that by changing the hermitian space 𝑉𝑛 if necessary, the local theta

correspondence 𝜋 ↦→ 𝜃𝑊𝑛 ,𝑉𝑛 (𝜋) restricted to tempered representations is sur-

jective.

The first and third points had already been established by Gan and Ichino in [19]

for another purpose. Moreover, Prasad [48, 49] had stated precise conjectures

concerning the second point. These conjectures are demonstrated in [20] by Gan

and Ichino by methods that we will not describe here.

2 The Global Conjectures

Through this section we fix a quadratic extension 𝑘′/𝑘 of number fields. We

denote the set of places of 𝑘 as |𝑘 | and for all 𝑣 ∈ |𝑘 | the corresponding completion

as 𝑘𝑣 . We also have 𝑘′𝑣 = 𝑘′ ×𝑘 𝑘𝑣 . Thus 𝑘′𝑣 ≃ 𝑘𝑣 × 𝑘𝑣 if 𝑣 splits in 𝑘′ and 𝑘′
𝑉

is a
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2.1 Automorphic forms and periods

unique quadratic extension of 𝑘𝑣 otherwise. Let A the ring of adèles of 𝑘. Recall

that it is a restricted product of 𝑘𝑣 over all places 𝑣 ∈ |𝑘 |which is the set of families

(𝑥𝑣)𝑣∈|𝑘 | with 𝑥𝑣 ∈ 𝑘𝑣 for all 𝑣 and 𝑥𝑣 ∈ O𝑣 for almost all non-archimedean 𝑣

where O𝑣 is the ring of integers of 𝑘𝑣 . We have a diagonal embedding 𝑘 ↩→ A
and we will also denoteA 𝑓 the ring of finite adeles (i.e. the restricted product of

non-archimedean completions of 𝑘) and 𝑘∞ = 𝑘⊗QR ≃
∏

𝑣 |∞ 𝑘𝑣 the archimedean

part of A. We denote by sgn𝑘′/𝑘 the quadratic character of the idèle class group

A×/𝑘× associated with, by the class field theory, the extension 𝑘′/𝑘. For all

𝑣 ∈ |𝑘 |, the restriction of sgn𝑘′/𝑘 to 𝑘×𝑣 coincides with sgn𝑘′𝑣/𝑘𝑣 (and it is trivial if 𝑣

splits in 𝑘′). Let𝑊 ⊂ 𝑉 be two hermitian or skew-hermitian spaces over 𝑘′ with

dim(𝑉) − dim(𝑊) =
{

1 in the hermitian case

0 in the skew-hermiitian case,

and set 𝐺 = U(𝑊) × U(𝑉), 𝐻 = U(𝑊) (algebraic groups defined over 𝑘). As in

the local case we have a “diagonal” inclusion 𝐻 ↩→ 𝐺 and the group of adelic

points 𝐺(A) is a locally compact group admitting the following more explicit

description. Fix a model of 𝐺 on O𝑘[1/𝑁] for some integer 𝑁 ≥ 1 where O𝑘

denotes the ring of algebraic integers of 𝑘. Then for almost all place 𝑣 ∈ |𝑘 |, the

group of points 𝐺(O𝑣) of this model over O𝑣 is a maximal compact subgroup of

𝐺(𝑘𝑣) and 𝐺(A) is the restricted product of 𝐺(𝑘𝑉), 𝑣 ∈ |𝑘 | with respect to 𝐺(O𝑣)
which is the set of families (𝑔𝑣)𝑣∈|𝑘 | with 𝑔𝑣 ∈ 𝐺(𝑘𝑣) for all 𝑣 ∈ |𝑘 | and 𝑔𝑣 ∈ 𝐺(O𝑣)
for almost all 𝑣 ∈ |𝑘 |. A similar description obviously applies to 𝐻(A).

2.1 Automorphic forms and periods

Recall that the automorphic forms on 𝐺(A) is a function 𝜑 : 𝐺(A) → C satisfying

the following conditions:

– 𝜑 is left invariant by 𝐺(𝑘).

– 𝜑 is right invariant by an open compact subgroup 𝐾 𝑓 ⊂ 𝐺(A 𝑓 ).

– For all 𝑔 ∈ 𝐺(A) the function 𝑔∞ ∈ 𝐺(𝑘∞) ↦→ 𝜑(𝑔𝑔∞) is 𝐶∞, in particular we

have an action of Lie algebra 𝔤∞ of 𝐺(𝑘∞) on 𝜑 by (𝑋.𝜑)(𝑔) = d

d𝑡
𝜑(𝑔𝑒 𝑡𝑋)|𝑡=0

that extends to the complexified universal enveloping algebra U(𝔤∞).

– 𝜑 satisfies a certain moderate growth at infinity (cf. [45] §1.2.3).

We denote by A(𝐺) the space of automorphic forms over 𝐺(A). Let us

point out that the definition above differs from the one usually admitted which
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2.1 Automorphic forms and periods

imposes an additional condition of 𝐾∞-finitness where 𝐾∞ is a maximal compact

subgroup of 𝐺(𝑘∞) fixed in advance. This definition has however the advantage

of providing a stable space A(𝐺) under the right translation action of 𝐺(A)
(whereas with the usual definition one only obtains a structure of (𝔤∞, 𝐾∞)-
module at archimedean places) and seems more natural for the questions we are

going to discuss. We denote Acusp(𝐺) ⊂ A(𝐺) the subspace of cusp forms, i.e.

automorphic forms which are rapidly decreasing as well as all their derivatives

(in a sense which we will not make precise here). This space is stable under the

action by the right translation of 𝐺(A) and admits a decomposition

Acusp(𝐺) =
⊕
𝜋

𝜋

as a direct sum of irreducible representations of 𝐺(A). Each of these irreducible

representations decomposes as a restricted tensor product 𝜋 = ⊗′
𝑣∈|𝑘 |𝜋𝑣 . More

precisely, there exists a family of smooth irreducible representations (𝜋𝑣)𝑣∈|𝑘 | of

local groups 𝐺(𝑘𝑣) that are unramified at almost all places 𝑣 ∈ |𝑘 | (which means

𝜋𝐺(O𝑣)𝑣 ≠ 0 and it is one-dimensional by the Satake isomorphism) and the nonzero

vectors 𝜑◦𝑣 ∈ 𝜋𝐺(O𝑣)𝑣 such that 𝜋 is isomorphic to the natural representation of

𝐺(A) on

lim−→
𝑆

⊗
𝑣∈𝑆

𝜋𝑣

where the limit is over the sufficiently “large” finite sets of places of 𝑘 (i.e. con-

taining the archimedean places and the ramified finite places) and the transition

maps

⊗
𝑣∈𝑆 𝜋𝑣 →

⊗
𝑣∈𝑇 𝜋𝑣 for 𝑆 ⊂ 𝑇 are defined by 𝜑𝑆 ↦→ 𝜑𝑆 ⊗

⊗
𝑣∈𝑇\𝑆 𝜑

◦
𝑣 (to

be precise, one needs to consider topological tensor products at archimedean

places).

The constructions of section 1.2 provide for every 𝑣 a representation 𝜈𝑣 of the

local group 𝐻(𝑘𝑣) (the trivial representation in the hermitian case and a certain

Weil representation in the skew-hermitian case). We can form their restricted

tensor product 𝜈 = ⊗′𝑣𝜈𝑣 and it turns out that there exists a natural realization

𝜈 ↩→ A(𝐻) in the space of automorphic forms on 𝐻 (in the hermitian case the

trivial representation is realized as the space of constant functions on𝐻(𝑘)\𝐻(A)
while in the skew-hermitian case 𝜈 is a certain global Weil representation and

the embedding 𝜈 ↩→ A(𝐻) is obtained via the theta series). In particular, in the

skew-hermitian case we must choose local data (𝜓0,𝑣 , 𝜇𝑣) for all 𝑣 ∈ |𝑘 | as in 1.2

in order to specify the representations 𝜈𝑣 . To obtain the embedding 𝜈 ↩→ A(𝐻)
we must assume that these local data come by localization of global characters

𝜓0 : A/𝑘 → C× and 𝜇 : A×
𝑘′/(𝑘

′)×→ C×.
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2.2 Automorphic 𝐿-functions and base change

We define an automorphic period

𝒫𝐻 : Acusp(𝐺) ⊗ 𝜈→ C,

where 𝜈 denotes the complex conjugation of the realization of 𝜈 in A(𝐻), by

𝒫𝐻(𝜑 ⊗ 𝜃) :=

∫
𝐻(𝑘)\𝐻(A)

𝜑(ℎ)𝜃(ℎ)dℎ

for all 𝜑 ∈ Acusp(𝐺) and 𝜃 ∈ 𝜈. The integral is absolutely convergent due to the

rapid decrease of 𝜑 and the measure dℎ for which we are integrating is a 𝐻(A)-
invariant measure which can be obtained as the quotient of a Haar measure on

𝐻(A) because 𝐻(𝑘) is a discrete subgroup. For the global Gan–Gross–Prasad

conjecture the specific choice of this Haar measure does not matter because we

are only interested in questions of non-vanishing of the period. On the other

hand, this choice matters for the Ichino–Ikeda conjecture which predicts an

explicit formula for (the square of) the period above. Note that in the hermitian

case, the representation 𝜈 being trivial, the period 𝒫𝐻 is simply the linear form

Acusp(𝐺) → C given by

𝒫𝐻(𝜑) =
∫
𝐻(𝑘)\𝐻(A)

𝜑(ℎ)dℎ.

In any case, if 𝜋 ⊂ Acusp(𝐺) is a cuspidal irreducible representation, the re-

striction of the period 𝒫𝐻 to 𝜋 defines an element of the space of intertwining

maps

Hom𝐻(A)(𝜋 ⊗ 𝜈,C) = Hom𝐻(A)(𝜋, 𝜈)

which decomposes into a (restricted) tensor product of the local spaces of in-

tertwining maps Hom𝐻𝑣 (𝜋𝑣 , 𝜈𝑣) for all 𝑣 ∈ |𝑘 |. Thus, a necessary condition for

this restriction to be nonzero is that these local spaces is nontrivial (a condition

which is itself made explicit by the local conjecture).

2.2 Automorphic 𝐿-functions and base change

Let 𝜋 ⊂ Acusp(𝐺) be an irreducible cuspidal representation that we assume to be

almost everywhere generic, i.e. the representation 𝜋𝑣 is generic in the sense of

§1.4.8 for almost all 𝑣 ∈ |𝑘 |. We also say that 𝜋 is of Ramanujan type because these

are the representations for which we hope to have a generalized Ramanujan

conjecture (i.e. 𝜋𝑣 is tempered for all 𝑣 ∈ |𝑘 |). This assumption also allows us to

define global 𝐿-functions only in terms of the local Langlands correspondence

(whereas in general one should consider more general packets of representations
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2.2 Automorphic 𝐿-functions and base change

called Arthur packets). Moreover, the two conjectures that will interest us only

relate, for the moment, to this type of cuspidal representation.

Let 𝜌 :
𝐿𝐺 → GL(𝑀) be an algebraic representation of the 𝐿-group of G.

According to the section 1.4.6, we can associate, at any place 𝑣 ∈ |𝑘 |, to the

representation 𝜋𝑣 a local 𝐿-function 𝐿(𝑠,𝜋𝑣 , 𝜌). We then define a global function

𝐿(𝑠,𝜋, 𝜌) by

𝐿(𝑠,𝜋, 𝜌) =
∏
𝑣∈|𝑘 |

𝐿(𝑠,𝜋𝑣 , 𝜌).

The product converges forℜ(𝑠) ≫ 1 and conjecturally 𝐿(𝑠,𝜋, 𝜌) admits a mero-

morphic continuation to the complex plane and a functional equation relating

𝐿(𝑠,𝜋, 𝜌) to 𝐿(1 − 𝑠,𝜋, 𝜌∨). In what follows, only two global 𝐿-functions will

appear. The first, which plays a minor role, is the adjoint 𝐿-function 𝐿(𝑠,𝜋,Ad)
associated to the adjoint representation of

𝐿𝐺. The second 𝐿-function, the one

that will interest us the most, is associated to the following representation 𝑅 of

𝐿𝐺:

𝑅 =


Ind

𝐿𝐺

𝐺×𝑊𝑘′
(𝑀𝑊 ⊗ 𝑀𝑉) hermitian case;

Ind

𝐿𝐺

𝐺×𝑊𝑘′
((𝑀𝑊 ⊗ 𝑀𝑉) ⊗ 𝜇−1) skew-hermitian case,

where 𝑀𝑊 and 𝑀𝑉 denote the standard representations of
�
U(𝑊) and

�
U(𝑉)

(recall that these are linear groups over C) respectively and we have identified

𝜇 with a character of the Weil group 𝑊𝑘 via the class field theory. We can also

describe the local factors of this 𝐿-function in the following explicit way. Since

𝐺 = U(𝑊) ×U(𝑉), we can decompose 𝜋 as a tensor product 𝜋 = 𝜋1 ⊠ 𝜋2 where

𝜋1 (resp. 𝜋2) is an irreducible cuspidal representation of U(𝑊) (resp. U(𝑉)).
According to the section 1.4.2, for all 𝑣 ∈ |𝑘 | not split in 𝑘′ the Langlands

parameters of𝜋1,𝑣 and𝜋2,𝑣 can be identified with conjugate-dual representations

𝜑1,𝑣 : WD𝑘′𝑣 → GL(𝑀1) and 𝜑2,𝑣 : WD𝑘′𝑣 → GL(𝑀2) of a certain sign. Then

we have 𝐿(𝑠,𝜋𝑣 , 𝑅) = 𝐿(𝑠, 𝜑1,𝑣 ⊗ 𝜑2,𝑣) in the hermitian case and 𝐿(𝑠,𝜋𝑣 , 𝑅) =
𝐿(𝑠, 𝜑1,𝑣 ⊗ 𝜑2,𝑣 ⊗ 𝜇−1

𝑣 ) in the skew-hermitian case. For a place 𝑣 splits in 𝑘′,

the groups U(𝑊)𝑣 and U(𝑉)𝑣 are linear groups over 𝑘𝑣 and the Langlands

parameters of 𝜋1,𝑣 and 𝜋2,𝑣 can be identified with the representations 𝜑1,𝑣 and

𝜑2,𝑣 of WD𝑘𝑣 . Then we have 𝐿(𝑠,𝜋𝑣 , 𝑅) = 𝐿(𝑠, 𝜑1,𝑣 ⊗ 𝜑2,𝑣)𝐿(𝑠, 𝜑∨
1,𝑣
⊗ 𝜑∨

2,𝑣
) in the

hermitian case and 𝐿(𝑠,𝜋𝑣 , 𝑅) = 𝐿(𝑠, 𝜑1,𝑣 ⊗ 𝜑2,𝑣 ⊗ 𝜇′𝑣)𝐿(𝑠, 𝜑∨1,𝑣 ⊗ 𝜑∨
2,𝑣
⊗ (𝜇′𝑣)−1) in

the skew-hermitian case where we write𝜇𝑣 = (𝜇′𝑣)−1⊠𝜇′𝑣 under the identification

𝑘′𝑣 ≃ 𝑘𝑣 × 𝑘𝑣 .
By the results of Mok [47] and Kaletha–Minguez–Shin–White [37] on the clas-

sification of automorphic representations of unitary groups as well as the works
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of Jacquet, Piatetski-Shapiro and Shalika [35] and Shahidi on the 𝐿-functions

of pairs and Asai for linear groups respectively, we know that 𝐿(𝑠,𝜋,Ad) and

𝐿(𝑠,𝜋, 𝑅) admit analytic continuations to C and satisfy the expected functional

equations. To be more precise, according to [47] and [37] there exist, with the

above notations, irreducible automorphic representations BC(𝜋1) and BC(𝜋2)
(BC for base change) of GL𝑑𝑊 (A𝑘′) and GL𝑑𝑉 (A𝑘′) respectively (where we de-

note A𝑘′ for the adèles over 𝑘′, 𝑑𝑊 = dim(𝑊) and 𝑑𝑉 = dim(𝑉)) whose local

components at 𝑣 ∈ |𝑘 | have Langlands parameters 𝜑1,𝑣 , 𝜑2,𝑣 respectively if

𝑣 does not split in 𝑘′ and 𝜑1,𝑣 × 𝜑∨
1,𝑣

and 𝜑2,𝑣 × 𝜑∨
2,𝑣

respectively if 𝑣 splits

in 𝑘′ (which is the case GL𝑑𝑊 (𝑘′𝑣) ≃ GL𝑑𝑊 (𝑘𝑣) × GL𝑑𝑊 (𝑘𝑣) and GL𝑑𝑉 (𝑘′𝑣) ≃
GL𝑑𝑉 (𝑘𝑣) × GL𝑑𝑉 (𝑘𝑣)). Moreover, 𝐿(𝑠,𝜋, 𝑅) coincides with the 𝐿-function of the

pair 𝐿(𝑠, BC(𝜋1)×BC(𝜋2)) defined by Jacquet, Piatetski-Shapiro, and Shalika [35]

in the hermitian case and with 𝐿(𝑠, BC(𝜋1)×BC(𝜋2)⊗𝜇−1) in the skew-hermitian

case while 𝐿(𝑠,𝜋,Ad) coincides with the product of Asai 𝐿-functions of BC(𝜋1)
and BC(𝜋2) defined by Shahidi. Note that BC(𝜋) = BC(𝜋1) ⊠ BC(𝜋2). It is an

automorphic representation of 𝐺(A𝑘′) ≃ GL𝑑𝑊 (A𝑘′) × GL𝑑𝑉 (A𝑘′) which is called

the (quadratic) base change of 𝜋, and we set 𝐿(𝑠, BC(𝜋)) = 𝐿(𝑠, BC(𝜋1) × BC(𝜋2)).
Thus, in the hermitian case we simply have

𝐿(𝑠,𝜋, 𝑅) = 𝐿(𝑠, BC(𝜋)).

2.3 The conjecture

We now have all the ingredients to state the global Gan–Gross–Prasad conjecture.

Conjecture 2.1 (Gan–Gross–Prasad). Let 𝜋 ⊂ Acusp(𝐺) be a cuspidal irreducible

almost everywhere generic representation. Then the following are equivalent:

1. The restriction of the period 𝒫𝐻 to 𝜋 is nonvanishing.

2. We have 𝐿(1
2
,𝜋, 𝑅) ≠ 0 and for all 𝑣 ∈ |𝑘 | we have Hom𝐻𝑣 (𝜋𝑣 , 𝜈𝑣) ≠ 0.

2.4 The refinement of Ichino–Ikeda

There is a refinement of conjecture 2.1 in the form of an identity directly linking

𝐿(1
2
,𝜋, 𝑅) to the period 𝒫𝐻 . This conjecture is due to Ichino and Ikeda [34] in the

case of orthogonal groups and was extended to unitary groups by N. Harris [29]

(in the hermitian case) and H. Xue [73] (in the skew-hermitian case). To simplify

the exposition, we will limit ourselves here to the Bessel case of the conjecture

(i.e. 𝑊 and 𝑉 are hermitian spaces).
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Let 𝑣 ∈ |𝑘 | and 𝜋𝑣 a smooth irreducible tempered representation of 𝐺(𝑘𝑣). In

particular, 𝜋𝑣 is unitary and we can fix a 𝐺(𝑘𝑣)-invariant inner product (−,−)𝑣
on (the space of) 𝜋𝑣 . Thanks to this inner product, we can define a local period

𝒫𝐻,𝑣 : 𝜋𝑣 × 𝜋𝑣 → C

by

𝒫𝐻,𝑣(𝜑𝑣 , 𝜑′𝑣) =
∫
𝐻(𝑘𝑣)
(𝜋𝑣(ℎ𝑣)𝜑𝑣 , 𝜑′𝑣)𝑣dℎ𝑣 , 𝜑𝑣 , 𝜑

′
𝑣 ∈ 𝜋𝑣

where dℎ𝑣 is a Haar measure on 𝐻(𝑘𝑣). The above integral is absolutely con-

vergent by the assumption that 𝜋𝑣 is tempered and moreover 𝒫𝐻,𝑣 induces a

𝐻(𝑘𝑣) × 𝐻(𝑘𝑣)-invariant hermitian form on 𝜋𝑣 . In particular, if the local period

𝒫𝐻,𝑣 is nonzero on 𝜋𝑣 then Hom𝐻(𝑘𝑣)(𝜋𝑣 ,C) ≠ 0. An important step in the proof

of the local Gan–Gross–Prasad conjecture is to show the reverse implication (cf.

[8] Theorem 8.2.1): 𝒫𝐻,𝑣 is nonzero on 𝜋𝑣 if and only if Hom𝐻(𝑘𝑣)(𝜋𝑣 ,C) ≠ 0.

Now let 𝜋 ⊂ Acusp(𝐺) be an irreducible cuspidal representation. We can

equip the adèlic groups 𝐺(A) and 𝐻(A) with canonical Haar measures d𝑔Tam,

dℎTam called Tamagawa measures (cf. [68] Chap.II). We normalize the global

period 𝒫𝐻 through the Tamagara measure on 𝐻(A) and we normalize the local

periods 𝒫𝐻,𝑣 by the local measures which factorizes the Tamagawa measure:

dℎTam =
∏
𝑣∈|𝑘 |

dℎ𝑣 .

We endow 𝜋 with the following inner product (the Petersson inner product)

(𝜑1, 𝜑2) ∈ 𝜋 × 𝜋 ↦→ ⟨𝜑1, 𝜑2⟩Pet =

∫
𝐺(𝑘)\𝐺(A)

𝜑1(𝑔)𝜑2(𝑔)d𝑔Tam

and we choose the local inner products (−,−)𝑣 , 𝑣 ∈ |𝑘 |, so they factor the global

inner product ⟨−,−⟩Pet:

⟨𝜑, 𝜑⟩Pet =
∏
𝑣∈|𝑘 |
(𝜑𝑣 , 𝜑𝑣)𝑣 , ∀𝜑 = ⊗′𝑣𝜑𝑣 ∈ 𝜋 = ⊗′𝑣𝜋𝑣 .

We associate to 𝜋 the following quotient of 𝐿-functions

L(𝑠,𝜋) := Δ𝑛+1

𝐿(𝑠, BC(𝜋))
𝐿(𝑠 + 1/2,𝜋,Ad)

where

Δ𝑛+1 :=

𝑛+1∏
𝑖=1

𝐿(𝑖 , sgn
𝑖
𝑘′/𝑘)
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2.4 The refinement of Ichino–Ikeda

is a finite product of special values of Hecke 𝐿-functions. We define a local ana-

logueL(𝑠,𝜋𝑣) ofL(𝑠,𝜋) for all place 𝑣 ∈ |𝑘 |. Suppose𝜋 is tempered everywhere,

which means that 𝜋𝑣 is tempered for all 𝑣 ∈ |𝑘 |. Then, for almost all place 𝑣 ∈ |𝑘 |
and for all vector 𝜑◦𝑣 ∈ 𝜋

𝐺(O𝑣)
𝑣 , we have ([29] Theorem 2.12)

𝒫𝐻,𝑣(𝜑◦𝑣 , 𝜑◦𝑣) = L

(
1

2

,𝜋𝑣

)
vol(𝐻(O𝑣))(𝜑◦𝑣 , 𝜑◦𝑣)𝑣 .

This leads us to define the normalized local periods by

𝒫♮
𝐻,𝜋𝑣

:= L

(
1

2

,𝜋𝑣

)−1

𝒫𝐻,𝑣 |𝜋𝑣 , 𝑣 ∈ |𝑘 |.

Now we can state the Ichino–Ikeda conjecture for hermitian unitary groups in

the following slightly informal way:

Conjecture 2.2. Let 𝜋 ⊂ Acusp(𝐺) be a cuspidal irreducible tempered represen-

tation. For all factorizable vector 𝜑 = ⊗′𝑣𝜑𝑣 ∈ 𝜋, we have

|𝒫𝐻(𝜑)|2 =
1

|𝑆𝜋 |
L

(
1

2

,𝜋

) ∏
𝑣∈|𝑘 |
𝒫♮
𝐻,𝜋𝑣
(𝜑𝑣 , 𝜑𝑣)

where 𝑆𝜋 is the centralizer of the “Langlands parameter” of 𝜋 (this is a global

analogue of the group 𝑆𝜙 introduced in section 1.4.2 which we will not try to

define here).

Remark 2.1. – By the equivalence mentioned

𝒫𝐻,𝑣 |𝜋𝑣 ≠ 0⇔ Hom𝐻(𝑘𝑣)(𝜋𝑣 ,C) ≠ 0,

and since 𝐿(𝑠,𝜋,Ad) has no pole at 𝑠 = 1, the above conjecture implies

conjecture 2.1 in the case where 𝜋𝑣 is tempered everywhere.

– By the generalized Ramanujan conjecture we expect to be able to replace the

hypothesis “𝜋 is tempered everywhere” by the hypothesis “𝜋 is almost every-

where generic”. However, even if the generalized Ramanujan conjecture is

far from being established in full generality, one can state a similar conjecture

under the (a priori) weaker hypothesis “𝜋 is almost everywhere generic” to

extend the definition of normalized local periods 𝒫♮
𝐻,𝜋𝑣

(which is no longer a
priori defines absolutely convergent integrals) by a certain “analytic continu-

ation”. Existence of such extension follows from the main results of [10] and

[5]. In this more general form (which we will not state) conjecture 2.2 then

becomes strictly stronger than conjecture 2.1.
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– In the case where dim(𝑊) = 1 (and therefore dim(𝑉) = 2), conjecture 2.2

is essentially equivalent to a well-known formula of Waldspurger [61] for

toric periods on quaternion algebras (see [29] Sect.3 for a formal reduction) of

which we gave an example in the introduction. It also seems that this formula

of Waldspurger was one of the main inspirations of Ichino and Ikeda to state

their conjecture.

2.5 Status

Even before the Gan–Gross–Prasad conjectures were extended to all classical

groups in [18], Ginzburg, Jiang and Rallis showed in a series of papers [21, 22, 23]

the implication 1 ⇒ 2 of the conjecture 2.1 under the assumption that 𝜋 is

globally generic, i.e. there exists a global Whittaker datum (𝑁, 𝜃) of 𝐺 with 𝜃

trivial on𝑁(𝑘) and for𝜑 ∈ 𝜋we have

∫
𝑁(𝑘)\𝑁(A) 𝜑(𝑢)𝜃(𝑢)d𝑢 ≠ 0, in particular this

implies that the group 𝐺 is quasi-split (because otherwise 𝐺 has no Whittaker

datum). It is not clear whether the Ginzburg–Jiang–Rallis approach could be

able to establish the reverse implication (at least in the globally generic case).

As we have already indicated, in the hermitian case and where dim(𝑊) = 1

conjectures 2.1 and 2.2 arise from the Waldspurger formula [61]. The same

Waldspurger formula also covers the analogues of these conjectures for a pair of

orthogonal special groups SO(𝑊) ⊂ SO(𝑉) with dim(𝑊) = 2 and dim(𝑉) = 3.

For the special orthogonal groups of the case dim(𝑊) = 3 and dim(𝑉) = 4,

the analogue of conjecture 2.2 has been established by Ichino [33] (then the

𝐿-function appears in the numerator of the right hand side of the formula is

essentially associated with the triple product of three cuspidal representations

of PGL2).

More recently, following an approach proposed by Jacquet–Rallis [36] for

comparing relative trace formulas and thanks to the fundamental lemma proved

by Z. Yun [75], W. Zhang proved conjecture 2.1 in the hermitian case under the

following simplifying assumptions ([77] Theorem 1.1):

– All the archimedean places of 𝑘 split in 𝑘′ .

– There are two distinct non-archimedean places 𝑣0, 𝑣1 ∈ |𝑘 | splits in 𝑘′ such

that 𝜋𝑣0
is supercuspidal and 𝜋𝑣1

is tempered.

Subsequent work by H. Xue [74] on the one hand and by Chaudouard–Zydor

[12] on the other hand now allows all these restrictions to be removed except

the existence of a split place 𝑣 ∈ |𝑘 | in which 𝜋𝑣 is supercuspidal. This last
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hypothesis seems inevitable by Zhang’s method which uses simple versions

of the Jacquet–Rallis trace formulas. The ongoing work of M. Zydor and P.-

H. Chaudouard to establish complete versions of these relative trace formulas

(work already initiated in [78, 79, 80]) should make it possible to remove this last

hypothesis.

Following his first paper, Zhang [76] tackled the conjecture 2.2. His main

result is a proof of this conjecture essentially under the following assumptions

(we leave aside a technical detail):

– Every archimedean place of 𝑘 split in 𝑘′.

– There is a non-archimedean place 𝑣 ∈ |𝑘 | split in 𝑘′where 𝜋 is supercuspidal.

– For any place 𝑣 ∈ |𝑘 | not split in 𝑘′ either 𝜋𝑣 is supercuspidal or unramified.

This third hypothesis is much more restrictive than the others and comes from

the following problem: in addition to the global comparison of relative trace

formulas proposed by Jacquet and Rallis, Zhang must also compare certain local

periods which he can only do for unramidied or supercuspidal representations

at non-split places. In [10], the author managed to extend this comparison to all

tempered representations at non-archimedean places, which finally allows us to

remove the third hypothesis. Furthermore, in a work currently being written

[5], the author obtained, by another method, the desired comparison between

local periods at archimedean places modulo an indeterminate sign which should

make it possible to establish without the first hypothesis the formula conjectured

by Ichino–Ikeda up to a single sign. Finally, let us point out that modulo this sign

problem the current work of Chaudouard–Zydor should also make it possible

to remove the second hypothesis.

Following the work of Zhang, conjectures 2.1 and 2.2 have also been partially

established in the Fourier–Jacobi case (i.e. skew-hermitian). More precisely, in

[41] Y. Liu proposed a comparison of relative trace formulas analogous to that of

Jacquet–Rallis to attack these conjectures. Following Zhang’s method, Hang Xue

[70, 71, 72] was then able to demonstrate conjectures 2.1 and 2.2 in the Fourier-

Jacobi case, under the same hypothesis of the existence of two distinct split places

in which 𝜋 is supercuspidal and temperate respectively (which allows him, like

Zhang, to consider only simple forms of relative trace formulas).
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2.6 Sketch of the proof of the global conjecture in the hermitian case

In this section, we give an outline of the proof by Zhang [77] of the Gan–

Gross–Prasad conjecture (Conjecture 2.1) under certain local assumptions in the

hermitian case. In particular, we will not talk about the proof of the Ichino–Ikeda

conjecture (Conjecture 2.2) nor of the skew-hermitian case.

2.6.1 Jacquet–Rallis’ approach

In [36] Jacquet and Rallis propose an approach to conjecture 2.1 via a comparison

of “relative trace formulas”. The latter, which generalize the famous Arthur–

Selberg trace formula, were introduced and studied in many cases by Jacquet

and his co-authors (see [40] for an introduction to this subject). In its purest

version, a relative trace formula consists of expressing in two ways an integral

of the following form∫
𝐻1(𝑘)\𝐻1(A)×𝐻2(𝑘)\𝐻2(A)

𝐾 𝑓 (ℎ1, ℎ2)𝜂1(ℎ1)𝜂2(ℎ2)dℎ1dℎ2 (8)

where 𝐺0 is a connected reductive group over 𝑘, 𝐻1 and 𝐻2 are algebraic sub-

groups of𝐺0 defined over 𝑘, 𝜂1 : 𝐻1(𝑘)\𝐻1(A) → C× and 𝜂2 : 𝐻2(𝑘)\𝐻2(A) → C×
are automorphic characters, 𝑓 is a compactly supported function on 𝐺0(A) and

𝐾 𝑓 (𝑥, 𝑦) =
∑

𝛾∈𝐺0(𝑘)
𝐾 𝑓 (𝑥−1𝛾𝑦), 𝑥, 𝑦 ∈ 𝐺0(A)

is the kernel of the action by convolution to the right of 𝑓 on 𝐿2(𝐺0(𝑘)\𝐺0(A)).
The trace formulas introduced by Jacquet and Rallis correspond to the following

two cases:

– 𝐺0 = 𝐺 = U(𝑊) × U(𝑉) where 𝑊 ⊂ 𝑉 are hermitian spaces over 𝑘′ with

dim(𝑊) = dim(𝑉) − 1, 𝐻1 = 𝐻2 = 𝐻 = U(𝑊) (equipped with the diagonal

inclusion 𝐻 ↩→ 𝐺) and 𝜂1, 𝜂2 are trivial.

– 𝐺0 = 𝐺′ = Res𝑘′/𝑘GL𝑛 × Res𝑘′/𝑘GL𝑛+1 where Res𝑘′/𝑘 denotes the Weil restric-

tion of scalar and 𝑛 = dim(𝑊), 𝐻1 = 𝐻′
1
= Res𝑘′/𝑘GL𝑛 equipped with the

natural inclusion 𝐻′
1
↩→ 𝐺′, 𝐻2 = 𝐻′

2
= GL𝑛 × GL𝑛+1 equipped with the

natural inclusion 𝐻′
2
↩→ 𝐺′, 𝜂1 trivial and 𝜂2 = 𝜂 a certain quadratic character

of 𝐻′
2
(A).

Even in these particular cases, the expression (8) can’t be done as is because

the integral is in general divergent and it must be regularized (for example by in-

troducing truncations as Arthur does). To circumvent this problem, Zhang only
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2.6 Sketch of the proof of the global conjecture in the hermitian case

considers “good” functions 𝑓 for which expression (8) is absolutely convergent

and which also allow him to obtain absolutely convergent geometric and spectral

expansions. This is called a simple trace formula (because of the restriction on

test functions). Let 𝐽( 𝑓 ) and 𝐼( 𝑓 ′) be the Jacquet–Rallis relative trace formulas

applied to “good” functions 𝑓 ∈ 𝐶∞𝑐 (𝐺(A)) and 𝑓 ′ ∈ 𝐶∞𝑐 (𝐺′(A)) respectively.

Then simple formal manipulations which are justified by the choice of “good”

test functions gives the equalities∑
𝛾∈𝐻(𝑘)\𝐺rs(𝑘)/𝐻(𝑘)

𝒪(𝛾, 𝑓 ) = 𝐽( 𝑓 ) =
∑

𝜋⊂Acusp(𝐺)
𝐽𝜋( 𝑓 ) (9)∑

𝛿∈𝐻′
1
(𝑘)\𝐺′

rs
(𝑘)/𝐻′

2
(𝑘)
𝒪(𝛿, 𝑓 ′) = 𝐼( 𝑓 ′) =

∑
Π⊂Acusp(𝐺′)
𝜔Π |A××A×=1

𝐼Π( 𝑓 ′) (10)

where

– 𝐺rs ⊂ 𝐺 denotes the Zariski open subset of regular semisimple elements for

the action by bimultiplication of 𝐻 × 𝐻 i.e. 𝑔 ∈ 𝐺rs if and only if the double

coset 𝐻𝑔𝐻 is closed under the Zariski topology and 𝑔−1𝐻𝑔 ∩ 𝐻 = {1} (that

is, the stabilizer of 𝑔 in 𝐻 ×𝐻 is trivial). We define in the same way the open

subset 𝐺′
rs
⊂ 𝐺′ of regular semisimple elements for the action of 𝐻′

1
× 𝐻′

2
by

bimultiplication.

– For 𝛾 ∈ 𝐺rs(𝑘),

𝒪(𝛾, 𝑓 ) =
∫
𝐻(A)×𝐻(A)

𝑓 (ℎ−1

1
𝛾ℎ2)dℎ1dℎ2

denotes the corresponding relative orbital integral. For 𝛿 ∈ 𝐺′
rs
(𝑘), we define

𝒪(𝛿, 𝑓 ′) in a similar way by twisting by the character 𝜂 on 𝐻′
2
(A).

– The right summation of the first formula is over all irreducible cuspidal

representations of 𝐺(A) and the right summation of the second formula is

over the set of irreducible cuspidal representations Π of 𝐺(A) whose central

character (here we denote 𝜔Π) is trivial on A× × A× = 𝑍𝐻′
2

(A) (the center of

𝐻′
2
(A)).

– The distributinos 𝑓 ↦→ 𝐽𝜋( 𝑓 ) and 𝑓 ′ ↦→ 𝐼Π( 𝑓 ′) are the relative characters defined

by

𝐽𝜋( 𝑓 ) =
∑
𝜑∈B𝜋

𝒫𝐻(𝜋( 𝑓 )𝜑)𝒫𝐻(𝜑)
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2.6 Sketch of the proof of the global conjecture in the hermitian case

𝐼Π( 𝑓 ′) =
∑
𝜑∈BΠ

𝒫𝐻′
1

(Π( 𝑓 ′)𝜑)𝒫𝐻′
2
,𝜂(𝜑)

where B𝜋, BΠ denote (good) orthonormal bases of 𝜋, Π respectively for

Peterssen scalar products, 𝒫𝐻 is the Gan–Gross–Prasad period, 𝒫𝐻′
1

(resp.

𝒫𝐻′
2
,𝜂) is the period that maps a cusp form to the integral over 𝐻′

1
(𝑘)\𝐻′

1
(A)

(resp. over 𝑍𝐻′
2

(A)𝐻′
2
(𝑘)\𝐻′

2
(A) against the character 𝜂).

The relative characters 𝐻𝜋 and 𝐼Π are immediately related to the periods 𝒫𝐻
and 𝒫𝐻′

1

, 𝒫𝐻′
2
,𝜂. In fact, we can show without too much difficulty that

𝐽𝜋 ≠ 0⇔ 𝒫𝐻 |𝜋 ≠ 0

𝐼Π ≠ 0⇔ 𝒫𝐻′
1

|Π ≠ 0 and 𝒫𝐻′
2
,𝜂 |Π ≠ 0.

According to the work of Rallis and Flicker [15] on the period 𝒫𝐻′
2
,𝜂 and the

classification of the automorphic representations of unitary groups by Mok [47]

and Kaletha–Minguez–Shin–White [37], the period𝒫𝐻′
2
,𝜂 |Π is nonzero if and only

ifΠ comes from a basis change of a product of unitary groups U(𝑊 ′)×U(𝑉′). On

the other hand, according to the work of Jacquet, Piatetski-Shapiro and Shalika

[35] on the Rankin–Selberg convolution, the period 𝒫𝐻′
1

|Π is non-zero if and only

if 𝐿(1
2
,Π) ≠ 0 (where, recall that 𝐿(𝑠,Π) is the 𝐿-function of the pair).

To prove the conjecture 2.1, it is enough to show that

𝐽𝜋 ≠ 0⇔ 𝐼
BC(𝜋) ≠ 0

and the strategy proposed by Jacquet-Rallis to establish this equivalence consists

of comparing formulas (9) and (10). More precisely, it involves comparing the

geometric sides (i.e. the left hand sides) to deduce an identity between the

spectral sides (i.e. the right hand sides). To this end, Jacquet and Rallis begin by

defining an injection

𝐻(𝑘)\𝐺rs(𝑘)/𝐻(𝑘) ↩→ 𝐻′
1
(𝑘)\𝐺′

rs
(𝑘)/𝐻′

2
(𝑘)

and more generally

𝐻(𝐹)\𝐺rs(𝐹)/𝐻(𝐹) ↩→ 𝐻′
1
(𝐹)\𝐺′

rs
(𝐹)/𝐻′

2
(𝐹) (11)

for all extension 𝐹 of 𝑘 (in particular the completions 𝑘𝑣 of 𝑘). We will then say

that two elements (𝛾, 𝛿) ∈ 𝐺rs(𝐹) × 𝐺′rs(𝐹) match if 𝐻′
1
(𝐹)𝛿𝐻′

2
(𝐹) is the image of

𝐻(𝐹)𝛾𝐻(𝐹) under (11). In order to compare formulas (9) and (10), we look for

functions 𝑓 ∈ 𝐶∞𝑐 (𝐺(A)) and 𝑓 ′ ∈ 𝐶∞𝑐 (𝐺′(A)) such that

𝒪(𝛾, 𝑓 ) = 𝒪(𝛿, 𝑓 ′)
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for the matching pair of elements (𝛾, 𝛿) ∈ 𝐺rs(𝐹) × 𝐺′rs(𝐹). When 𝑓 (resp. 𝑓 )

decomposes as a product 𝑓 =
∏

𝑣 𝑓𝑣 (resp. 𝑓 ′ =
∏

𝑣 𝑓
′
𝑣) of local functions 𝑓𝑣 ∈

𝐶∞𝑐 (𝐺(𝑘𝑣)) (resp. 𝑓 ′𝑣 ∈ 𝐶∞𝑐 (𝐺′(𝑘𝑣))) (we have 𝑓𝑣 = 1𝐺(O𝑣), resp. 𝑓 ′𝑣 = 1𝐺′(O𝑣) for

almost all 𝑣 ∈ |𝑘 |), we have a corresponding factorization of orbital integrals:

𝒪(𝛾, 𝑓 ) =
∏
𝑣

𝒪(𝛾, 𝑓𝑣) (resp. 𝒪(𝛿, 𝑓 ′) =
∏
𝑣

𝒪(𝛿, 𝑓 ′𝑣))

and we can first try to compare the local orbital integrals 𝒪(𝛾, 𝑓𝑣) and 𝒪(𝛿, 𝑓 ′𝑣).
For this, Jacquet and Rallis introduce a family of “transfer factors”

Δ𝑣 : 𝐺rs(𝑘𝑣) × 𝐺′rs(𝑘𝑣) → C

for all 𝑣 ∈ |𝑘 | which are defined by explicit formulas and have the following

essential properties:

– Δ𝑣(𝛾, 𝛿) = 0 unless 𝛾 and 𝛿 match.

– Δ𝑣(ℎ1𝛾ℎ2, ℎ
′
1
𝛿ℎ′

2
) = 𝜂𝑣(ℎ′

2
)Δ𝑣(𝛾, 𝛿) for all ℎ1, ℎ2 ∈ 𝐻(𝑘𝑣), ℎ′

1
∈ 𝐻′

1
(𝑘𝑣), and

ℎ′
2
∈ 𝐻′

2
(𝑘𝑣) and 𝜂𝑣 denotes the local component of 𝜂 at 𝑣.

– If 𝛾 ∈ 𝐺rs(𝑘) and 𝜂 ∈ 𝐺′
rs
(𝑘)match then∏

𝑣∈|𝑘 |
Δ𝑣(𝛾, 𝛿) = 1.

Following Jacquet and Rallis, we then say that two functions ( 𝑓𝑣 , 𝑓 ′𝑣) ∈
𝐶∞𝑐 (𝐺(𝑘𝑣)) × 𝐶∞𝑐 (𝐺′(𝑘𝑣)) match or they are transfer of each other if

𝒪(𝛾, 𝑓𝑣) = Δ𝑣(𝛾, 𝛿)𝒪(𝛿, 𝑓 ′𝑣)

for all matching pair of elements (𝛾, 𝛿) ∈ 𝐺rs(𝑘𝑣) × 𝐺′rs(𝑘𝑣). In order to construct

sufficient pairs of global functions ( 𝑓 , 𝑓 ′) that allow us to compare formulas

(9) and (10) effectively, we are naturally led to consider the following two local

problems:

– Fundamental lemma: Show that 𝑓 = 1𝐺(O𝑣) and 𝑓 ′ = 1𝐺′(O𝑣) match for almost

all place 𝑣.

– Existence of transfer: Show that for any function 𝑓𝑣 ∈ 𝐶∞𝑐 (𝐺(𝑘𝑣)) there exists

a matching function 𝑓 ′𝑣 ∈ 𝐶∞𝑐 (𝐺′(𝑘𝑣)) and vice versa.
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2.6 Sketch of the proof of the global conjecture in the hermitian case

These two statements are easy to prove at split places 𝑣 ∈ |𝑘 | hence the essential

problem therefore lies in the non-split places. Let us point out that once the

comparison has been made, it is still necessary to separate the contributions

from the spectral side (in order to obtain an identity directly relates 𝐽𝜋 and

𝐼
BC(𝜋)). For this, in addition to the local conjecture (which ensures that given Π

there exists at most one cuspidal representation 𝜋 satisfying Hom𝐻(𝑘𝑣)(𝜋𝑣 ,C) ≠
0 everywhere and Π = BC(𝜋)) we need a priori an extended version of the

fundamental lemma for all the elements of certain spherical Hecke algebras (this

is what really allows us to separate the spectral contributions by applying Stone–

Weierstrass theorem). However, this fundamental lemma for spherical Hecke

algebras is also very easy to establish at split places and Zhang remarked that this

was sufficient to isolate all spectral terms from a recent result of Ramakrishnan

[51].

2.6.2 Work of Z. Yun

In [75], Zhiwei Yun establishes the Jacquet–Rallis fundamental lemma for func-

tion fields. His proof uses geometric methods close to those introduced by Ngô

Bao Châu in his thesis to demonstrate the fundamental lemma of Jacquet–Ye

(which is the fundamental lemma resulting from another relative trace formula).

In the appendix of [75] and by methods of model theory, Julia Gordon shows how

one can transfer this result to number fields and deduce from it the fundamental

lemma in any place 𝑣 of sufficiently large residual characteristic.

2.6.3 Work of W. Zhang

The main result demonstrated by Zhang in [77] is the existence of transfer at

non-archimedean places. The main steps are as follows:

– Using the partition of unity and a decent inspired by Harish-Chandra, Zhang

localizes the problem to the neighborhoods of semi-simple (not necessarily

regular) elements 𝛾 ∈ 𝐺(𝑘𝑣) and 𝛿 ∈ 𝐺′(𝑘𝑣). Then it shows that if 𝛾 and 𝛿 are

not central we reduce a transfer problem to smaller groups, which allow us

to treat these cases inductively.

– At neighborhoods of central elements, via Cayley transform, it suffices to

consider an analogous problem on Lie algebras. More precisely, the problem

is reduced to compare orbital integrals for the adjoint action of U(𝑉) on 𝔲(𝑉)
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2.6 Sketch of the proof of the global conjecture in the hermitian case

(the Lie algebra of U(𝑉)) with orbital integrals for the adjoint action of GL𝑛+1

on 𝔤𝔩𝑛+1
.

– The same descent method inspired by Harish-Chandra makes it possible to

show the desired result for the functions on these Lie algebras with disjoint

support of the nilpotent cone (i.e. the set of elements whose orbits contain

the origin in their closure).

– Zhang shows that if 𝑓 and 𝑓 ′ are functions on 𝔲(𝑉) and 𝔤𝔩𝑛+1
respectively,

whose orbital integrals match then so do some of their partial Fourier trans-

forms up to an explicit multiplicative constant (in fact we must consider four

Fourier transforms, including the identity). This is the heart of the proof and

this step is based on local analogues for the Lie algebras of the Jacquet–Rallis

trace formulas as well as an ingenious induction which uses the fact that the

adjoint representations of U(𝑊) and GL𝑛 on 𝔲(𝑉) and 𝔤𝔩𝑛+1
respectively are

reducible.

– Finally, according to a result of Aizenbud [1], one can write any smooth

function with compact support on Lie algebras as a sum of images of the

various Fourier transforms of functions whose supports are disjoint nilpotent

cone and of a function whose orbital integrals are all zero. According to the

previous steps, this concludes the proof of the existence of the transfer.

2.6.4 Work of H. Xue and Chaudouard–Zydor

In [74], H. Xue adapted Zhang’s proof to archimedean places and obtained the

existence of the transfer for a dense subspace of the space of test functions.

Indeed, in this case only the dual assertion of Aizenbud’s result is known (i.e.

there is no invariant distribution on the Lie algebra of which all the Fourier

transforms have support in the nilpotent cone) which only implies that any

test function is approximable by sums of Fourier transforms of functions with

disjoint support of the nilpotent cone and of a function of zero orbital integrals.

Besides this difference, Xue’s proof is similar to that in the non-archimedean

case and allows remove Zhang’s hypothesis at archimedean places.

At the same time, Zydor [78, 79] and Chaudouard–Zydor [12] began to de-

velop Jacquet–Rallis trace formulas in complete generality (i.e. without restric-

tion on the test functions). As a corollary of their first results, we can apply and

compare these trace formulas for “good” functions a little more general than
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those of Zhang, which in particular makes it possible to remove the hypothesis

of the existence of a split place where the representation 𝜋 is tempered.
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