
The Rubik’s Cube: A Pocket Group

Le Rubik’s Cube, Groupe de Poche
-

Re-TEXed by Seewoo Lee*

Pierre Colmez

Last updated: July 18, 2025

Introduction

The Rubik’s cube is made up of 27 small cubes, of which 7 are fixed (the central cube and those
at the center of the faces), and 20 are movable (the 8 corners and the 12 edges; we denote by
X and Y the sets of corners and edges, respectively). An ingenious mechanism allows each of
the outer layers to rotate, thereby scrambling the movable cubes; this is physically visible since
the outer faces of the movable cubes are colored (an outer face remains on the outside while
rotating the layers). Solving the Rubik’s Cube means returning it to the initial state, where each
face is a single color. We will explain why, if you disassemble a Rubik’s Cube and reassemble
it randomly, you have a 1

12 chance of being able to solve it. This will require transforming the
Rubik’s Cube into a group1.

1 The Rubik’s Group

Let E denote the set of all possible states of the cube. This set is the product of the set EX of
corner states and the set EY of edge states. Since there are 8 corners that can be permuted
freely, and each corner, once its position is chosen, can be placed in 3 different orientations
(the outer faces must be visible), we have |EX | = 8! × 38. Similarly, the 12 edges can be freely
permuted, and each can be flipped once its position is fixed; therefore, |EY | = 12!×212, and hence
|E| = 12! × 8! × 38 × 212 = 229 × 315 × 53 × 72 × 11.

Now, there is a group G that acts naturally on E; it is the group of all Rubik’s Cube config-
urations (i.e., all possible scramblings), described more explicitly below (we allow ourselves to
disassemble the Rubik’s Cube and reassemble it, with the colored faces on the outside). There
is a natural bĳection between G and E, consisting of letting an element 𝑔 ∈ G act on the initial

*seewoo5@berkeley.edu. Most of the translation is due to ChatGPT, and I only fixed a little.
1It is one of the rare groups you can walk down the street with; you can do the same with Artin’s braid group, but

it tends to get tangled easily.

1



Uncovering the Scrambling Group

state of the Rubik’s Cube2. However, it is important to distinguish3 between G and E in order to
understand in what sense the Rubik’s Cube forms a group.

Let Rub denote the Rubik’s group, which is the subgroup of G generated by the 6 rotations
of the layers (thus, it is the subgroup of scramblings that can be achieved without taking the
cube apart). The statement we aim to prove can then be expressed as the following, which is a
purely group-theoretic result.

Theorem 1. The index of the subgroup Rub of G is 12.

This result is a consequence of a more precise description (see Theorem 5) of Rub as a
subgroup of G. Since the size of G is known, we can deduce that of Rub, which is nothing other
than the number of cube states that can be reached through a sequence of legal moves (given the
size of this number, it is difficult to hope to solve the Rubik’s Cube by relying on pure chance).

Corollary 2. |Rub| = 1
12 · 12! · 8! · 212 · 38 = 43 252 003 274 489 856 000.

2 Uncovering the Scrambling Group

• Seperation of edges and corners. Since it is not possible to swap a corner and an edge, and since
the corners and edges can be scrambled completely independently, the group G is the direct
product G = GX × GY of the group GX of corner moves and the group GY of edge moves.
Thus, every element 𝑔 of 𝐺 can be written in the form

𝑔 = (𝜋X(𝑔),𝜋Y(𝑔)),

where 𝜋X(𝑔) ∈ GX and 𝜋Y(𝑔) ∈ GY. Moreover,

𝜋X : G → GX and 𝜋Y : G → GY

are group homomorphisms. The groups GX and GY are the subgroups of G that fix Y and
X, respectively; they are also the kernels of 𝜋Y and 𝜋X, respectively.

• The group of scrambling corners. By considering only the positions of the corners, ignoring
their orientations, gives a natural group homomorphism 𝑔 ↦→ 𝜎X(𝑔) from GX to the group of
permutations PermX of the set X of corners. This morphism is surjective, since all the corners
are physically identical. The kernel of this morphism is the group RotX of corner rotations,
which is isomorphic4 to (Z/3Z)X =

∏
𝑥∈X(Z/3Z). We can also view PermX as a subgroup

of GX by selecting a distinguished (visible) face of each corner cube 𝑥 ∈ X: if 𝜎 ∈ PermX,

2In fact, we could have started from any state 𝑒, and obtained a bĳection 𝑔 ↦→ 𝑔 · 𝑒 from 𝐺 to 𝐸; in summary, one can
go from any state of the cube to any other by letting 𝐺 act, and this through the action of a unique element of 𝐺. We say
that 𝐸 is a principal homogeneous space under the action of 𝐺. A similar situation occurs when 𝐸 is an affine space and
𝐺 is the associated vector space: the choice of an origin 𝑂 in 𝐸 defines a bĳection 𝑣 ↦→ 𝑂 + 𝑣 from 𝐺 to 𝐸, and one can go
from any point in 𝐸 to any other point by translating by a vector from 𝐺, and in a unique way. Likewise, the set of bases
of a vector space of dimension 𝑛 over a field 𝐾 is a principal homogeneous space under the action of the group GL𝑛(𝐾).

3This amounts to distinguishing between the pieces that make up the cube and their positions: the group of moves
acts on the positions, and an element 𝑔 ∈ 𝐺 sends the piece 𝑥 located at position 𝑝 to position 𝑔(𝑝), independently of
the initial position of 𝑥 in the cube’s initial state.

4If (𝑛𝑥)𝑥∈X is an element of (Z/3Z)X, the corresponding rotation rotates the corner 𝑥 by 𝑛𝑥 thirds of a turn (in
the clockwise direction) around the axis going from the center of the Rubik’s Cube through the corner of the cube
corresponding to 𝑥.
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Uncovering the Scrambling Group

then 𝜎 sends the cube located at corner 𝑥 to corner 𝑥′ = 𝜎(𝑥), with the distinguished face
of 𝑥 placed onto the distinguished face of 𝑥′. Thus, any element 𝑔 in GX can be uniquely
written in the form 𝑔 = 𝜌𝜎, where 𝜌 ∈ RotX and 𝜎 ∈ PermX. This expresses the fact that any
move involving the corners can be decomposed into a permutation of the corners (aligning
distinguished faces), followed by a rotation of the corners.

Note that the groups RotX and PermX do not commute: if 𝜌 = (𝑛𝑥)𝑥∈X and 𝜎 ∈ PermX,
then 𝜎𝜌𝜎−1 is the rotation (𝑛′𝑥)𝑥∈X, with 𝑛′𝑥 = 𝑛𝜎(𝑥). Therefore, the group GX is not the direct
product5 of RotX and PermX.

If 𝑔 = 𝜌𝜎, where 𝜌 = (𝑛𝑥)𝑥∈X and 𝜎 ∈ PermX, then we define the total rotation rtX(𝑔) of 𝑔 by
the formula rtX(𝑔) =

∑
𝑥∈X 𝑛𝑥 ; it is an element of Z/3Z.

Lemma 3. rtX : GX → Z/3Z is a group homomorphism.6

Proof. If 𝑔 = 𝜌𝜎 and 𝑔′ = 𝜌′𝜎′, with 𝜌 = (𝑛𝑥)𝑥∈X and 𝜌′ = (𝑛′𝑥)𝑥∈X, then 𝑔𝑔′ = 𝜌′′𝜎′′,
where 𝜌′′ = 𝜌 · 𝜎𝜌′𝜎−1 and 𝜎′′ = 𝜎𝜎′. Now, 𝜎𝜌′𝜎−1 = (𝑚𝑥)𝑥∈X, with 𝑚𝑥 = 𝑛′

𝜎(𝑥), and so,
if 𝜌′′ = (𝑛′′𝑥 )𝑥∈X, we have: 𝑛′′𝑥 = 𝑛𝑥 + 𝑛′

𝜎(𝑥). It follows that rtX(𝑔𝑔′) =
∑
𝑥∈X(𝑛𝑥 + 𝑛′

𝜎(𝑥)),
and since

∑
𝑥∈X 𝑛

′
𝜎(𝑥) =

∑
𝑥∈X 𝑛

′
𝑥 , because 𝑥 ↦→ 𝜎(𝑥) is a bĳection of X, we finally obtain:

rtX(𝑔𝑔′) =
∑
𝑥∈X 𝑛𝑥 +

∑
𝑥∈X 𝑛

′
𝑥 = rtX(𝑔) + rtX(𝑔′), which completes the argument. □

• The group of scrambling edges. A similar discussion can be made for the edges: we have a
natural group homomorphism 𝑔 ↦→ 𝜎Y(𝑔) from GY to the group of permutations Perm(Y)
of the set Y of edges. This homomorphism is surjective, and its kernel is the group RotY of
edge flips, which is isomorphic to (Z/2Z)Y. We can again view PermY as a subgroup of GY

by selecting a preferred visible face for each edge 𝑦 ∈ Y, which allows any element 𝑔 ∈ GY to
be uniquely written in the form 𝑔 = 𝜌𝜎, where 𝜌 ∈ RotY and 𝜎 ∈ PermY. We define the total
rotation (flip) rtY(𝑔) of an element 𝑔 ∈ GY by rtY(𝑔) =

∑
𝑦∈Y 𝑛𝑦 , if 𝑔 = 𝜌𝜎 with 𝜌 = (𝑛𝑦)𝑦∈Y

and 𝜎 ∈ PermY. As before, we obtain a group homomorphism rtY : GY → Z/2Z.

We can describe the morphism rtY a bit more directly: let F be the set of visible faces of
the edges (since each edge has two visible faces, we have |F| = 2|Y| = 24). The group GY

permutes the elements of F, which gives rise to a group homomorphism 𝜎F : GY → PermF.

Proposition 4. If 𝑔 ∈ GY, then (−1)rtY(𝑔) is the signature of the permutation 𝜎F(𝑔).

Proof. We want to verify that the two group homomorphisms 𝑔 ↦→ sgn(𝜎F(𝑔)) and 𝑔 ↦→
(−1)rtY(𝑔) coincide. To do so, it suffices to verify the equality in two cases: For 𝑔 ∈ PermY,
since 𝜎F(𝑔) is a permutation of the faces of the edges, it permutes each face an even number
of times, so sgn(𝜎F(𝑔)) = 1. For 𝑔 ∈ RotY that flips a single edge—since such flips generate
RotY, and GY is generated by RotY and PermY.

5It is the semidirect product of RotX and PermX (this situation is rather rare: in general, if 𝜑 : 𝐺 → 𝐻 is a surjective
group homomorphism, it is impossible to find a subgroup of 𝐺, isomorphic to 𝐻, that maps bĳectively onto 𝐻 via 𝜑).

6One might wonder to what extent the previous constructions depend on the choice of distinguished faces. Let
( 𝑓𝑥)𝑥∈X and ( 𝑓 ′𝑥)𝑥∈X be two choices of faces, and let 𝜄 and 𝜄′ denote the injections of PermX into GX determined by these
two choices. There exists a unique 𝑟 ∈ RotX that sends 𝑓𝑥 to 𝑓 ′𝑥 for all 𝑥 ∈ X, and we have 𝜄′(𝜎) = 𝑟 · 𝜄(𝜎) · 𝑟−1 for all
𝜎 ∈ PermX. Indeed, by definition, 𝜄′(𝜎) sends the face 𝑓 ′𝑥 of corner 𝑥 to the face 𝑓 ′

𝜎(𝑥) of corner 𝜎(𝑥), which is also what
𝑟 · 𝜄(𝜎) · 𝑟−1 does, since: 𝑟−1( 𝑓 ′𝑥) = 𝑓𝑥 , 𝜄(𝜎)( 𝑓𝑥) = 𝑓𝜎(𝑥), and 𝑟( 𝑓𝜎(𝑥)) = 𝑓 ′

𝜎(𝑥). It follows that if 𝑔 decomposes as 𝑔 = 𝜌𝜎,
where 𝜌 = (𝑛𝑥)𝑥∈X, with the choice ( 𝑓𝑥)𝑥∈X, and as 𝑔 = 𝜌′𝜎′, where 𝜌′ = (𝑛′𝑥)𝑥∈X, with the choice ( 𝑓 ′𝑥)𝑥∈X, then 𝜎′ = 𝜎

and 𝜌′ = 𝜌 · 𝑟−1 · 𝜄′(𝜎) · 𝑟 · 𝜄′(𝜎)−1. Now, if 𝑟 = (𝑚𝑥)𝑥∈X, then 𝜄′(𝜎) · 𝑟 · 𝜄′(𝜎)−1 = (𝑚′
𝑥)𝑥∈X, with 𝑚′

𝑥 = 𝑚𝜎(𝑥), and thus
𝑛′𝑥 = 𝑛𝑥 + 𝑚𝑥 − 𝑚𝜎(𝑥). We then deduce that

∑
𝑥∈X 𝑛

′
𝑥 =

∑
𝑥∈X 𝑛𝑥 , which proves that rtX is independent of the choice of

distinguished faces.
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The Rubik’s Group as a Subgroup of the Scrambling Group

– If 𝑔 ∈ RotY flips only one edge, then rtY(𝑔) = 1, hence (−1)rtY(𝑔) = −1. Furthermore, 𝜎F(𝑔)
is the transposition swapping the two faces of that edge, so sgn(𝜎F(𝑔)) = −1 as well.

– If 𝑔 ∈ PermY, then rtY(𝑔) = 0, so (−1)rtY(𝑔) = 1. Now, if we denote 𝑓Y as the preferred face
of 𝑦 ∈ Y, and 𝑓 ′Y as the other one, then 𝜎F(𝑔) permutes 𝑓Y and 𝑓 ′Y in the same way. As a
result, every cycle length in the cycle decomposition of 𝜎F(𝑔) appears an even number of
times, so sgn(𝜎F(𝑔)) = 1 as well.

This completes the proof. □

• A global invariant. Let 𝜀 be the homomorphism from 𝐺 to {±1}, mapping 𝑔 ∈ 𝐺 to the
signature of the permutation 𝜎X∪Y(𝑔) induced on the positions X ∪ Y of the Rubik’s Cube,
ignoring orientations.

The permutation group of X ∪ Y contains the product PermX × PermY, and 𝜎X∪Y(𝑔) corre-
sponds to the element (𝜎X ◦ 𝜋X(𝑔), 𝜎Y ◦ 𝜋Y(𝑔)) of that product; hence we have:

𝜀(𝑔) = sgn(𝜎X ◦ 𝜋X(𝑔))sgn(𝜎Y ◦ 𝜋Y(𝑔)).

3 The Rubik’s Group as a Subgroup of the Scrambling Group

By combining the three group homomorphisms defined above, we obtain a group homomor-
phism:

rt : G → (Z/3Z) × (Z/2Z) × {±1}, with rt(𝑔) = (rtX ◦ 𝜋X(𝑔), rtY ◦ 𝜋Y(𝑔), 𝜀(𝑔)).

This morphism is clearly surjective; its kernel H therefore has index 12 in G, and Theorem 1 is
thus a consequence of the following result:

Theorem 5. We have Rub = H. In other words, an element 𝑔 of 𝐺 belongs to the Rubik’s group
Rub if and only if: 𝜋X(𝑔) and 𝜋Y(𝑔) have total rotation zero, and 𝑔 induces an even permutation
on the cube’s positions.

The proof of this result consists of two parts: the first (Proposition 6), rather pleasant, is to
verify that every element of Rub satisfies the conditions above, and the second (Proposition 12),
a bit more tedious, requires showing that every element of G satisfying the theorem’s conditions
can be written as a product of layer rotations of the cube; this amounts to describing a solution
algorithm7 for the Rubik’s Cube.

Proposition 6. The group Rub is a subgroup of H.

Proof. Since H is the intersection of the kernels of rtX ◦ 𝜋X, rtY ◦ 𝜋Y, and 𝜀, and since Rub is
generated by the layer rotations, it suffices to prove that these layer rotations belong to each of
those kernels. Let 𝑔 be a layer rotation.

• From Proposition 4, the kernel of rtY is also the set of elements of GY that induce a permutation
of signature 1 on the set 𝐹 of edge faces. But 𝑔 induces a product of two 4-cycles on these 24
faces, so its signature is 1. We deduce that 𝑔 belongs to the kernel of rtY ◦ 𝜋Y.

7The resulting algorithm is not very efficient: it has been verified, with the help of a computer, that it is always
possible to solve the Rubik’s Cube under 25 rotations. Its value is more theoretical; it serves to illustrate the effect of
conjugation on the action of a group on a set.
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Solving Rubik’s Cube

• We may define the distinguished faces as those on the top and bottom of the cube; then
horizontal layer rotations contribute zero rotation at each corner, so the total corner rotation
is zero. If a vertical slice is rotated, the four corners not on that slice have zero rotation, and
the four involved corners have rotations of 1, 2, 1, and 2, whose sum is indeed 0 in Z/3Z.
Thus, in all cases, 𝑔 belongs to the kernel of rtX ◦ 𝜋X.

• 𝑔 induces a 4-cycle on the corners and a 4-cycle on the edges; hence 𝜀(𝑔) = 1, which shows
that 𝑔 lies in the kernel of 𝜀.

This completes the proof of Rub ⊆ H. □

4 Solving Rubik’s Cube

The algorithm described below8 consists of:

• Placing the edges in their correct positions.

• Flipping them two at a time to orient them correctly.

• Placing the corners in their correct positions without disturbing the edges.

• Rotating the corners two at a time to orient them correctly.

With some thought, the first two steps and the last two can be combined.

• Notations. We denote the faces of the Rubik’s Cube by 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 . If 𝑟 is a face, we also
denote by 𝑟 the quarter-turn rotation of the cube layer corresponding to face 𝑟 (clockwise,
with the axis oriented from the center of the cube toward the center of face 𝑟). By definition,
Rub is the subgroup of G generated by 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , and if 𝑟 is a face, then 𝑟−1 is the quarter-
turn rotation of the corresponding layer of the cube in the counterclockwise direction (i.e., a
quarter-turn opposite to 𝑟).

If 𝑟 and 𝑠 are two faces that share an edge, we denote this edge by 𝑦𝑟𝑠 (or 𝑦𝑠𝑟), and if 𝑟, 𝑠, 𝑡
are three faces that share a corner, we denote this corner by 𝑥𝑟𝑠𝑡 (or 𝑥𝑠𝑟𝑡 , etc.).

We index the faces so that (𝑎, 𝑓 ), (𝑏, 𝑒), and (𝑐, 𝑑) form pairs of opposite faces, and such that
𝑎 sends 𝑦𝑎𝑏 → 𝑦𝑎𝑐 , then 𝑦𝑎𝑐 → 𝑦𝑎𝑒 , 𝑦𝑎𝑒 → 𝑦𝑎𝑑, and 𝑦𝑎𝑑 → 𝑦𝑎𝑏 . The 8 corners are then: 𝑥𝑎𝑏𝑐 ,
𝑥𝑎𝑐𝑒 , 𝑥𝑎𝑒𝑑, 𝑥𝑎𝑑𝑏 , 𝑥 𝑓 𝑐𝑏 , 𝑥 𝑓 𝑒𝑐 , 𝑥 𝑓 𝑑𝑒 , and 𝑥 𝑓 𝑏𝑑.

• Edge permutation. The permutation of edges uses the element (𝑎2𝑏)5 from Rub and its
conjugates. This element has the property of swapping 𝑦𝑎𝑐 and 𝑦𝑎𝑑 by rotating face 𝑎, while
leaving all other edges fixed9. In particular, its image in PermY via 𝜎Y◦𝜋Y is the transposition
of edges 𝑦𝑎𝑐 and 𝑦𝑎𝑑.

Moreover, it is easy to verify that if 𝑦 and 𝑦′ are any two distinct elements of 𝑌, then there
exists some 𝑔 ∈ Rub sending 𝑦𝑎𝑐 → 𝑦 and 𝑦𝑎𝑑 → 𝑦′. Then the image of 𝑔(𝑎2𝑏)5𝑔−1 under
𝜎Y ◦ 𝜋Y is the transposition swapping 𝑦 and 𝑦′. It follows that 𝜎Y ◦ 𝜋Y(Rub) contains all
transpositions, and since these generate PermY, this proves the following result.

8It is easier to follow with a Rubik’s Cube in hand, but with a bit of determination, paper and pencil can suffice
(though it’s a pity to miss out on the existence of a physical version of the Rubik’s group).

9The move 𝑎2𝑏 moves 7 edges, forming one cycle of length 5 and one of length 2; its 5th power therefore eliminates
the 5-cycle, but it is somewhat miraculous that it does not flip any element of that cycle.
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Solving Rubik’s Cube

Lemma 7. The composition 𝜎Y ◦ 𝜋Y induces a surjection from Rub onto PermY.

• Edge orientation. The move 𝑑2 𝑓 𝑏𝑑−1 flips 𝑦𝑎𝑑 and leaves 𝑦𝑎𝑐 fixed; thus the element

ℎ = (𝑎2𝑏)5(𝑑2 𝑓 𝑏𝑑−1)−1(𝑎2𝑏)5(𝑑2 𝑓 𝑏𝑑−1)

flips both 𝑦𝑎𝑐 and 𝑦𝑎𝑑 without affecting the other edges. If 𝑦 and 𝑦′ are two distinct elements
of𝑌, and if 𝑔 ∈ Rub sends 𝑦𝑎𝑐 → 𝑦 and 𝑦𝑎𝑑 → 𝑦′, then 𝑔ℎ𝑔−1 flips 𝑦 and 𝑦′ without affecting
the other edges. It follows that 𝜋Y(Rub ∩ ker(𝜎Y ◦ 𝜋Y)) contains the flips of any two edges.
Since such elements generate the subgroup Rot0

Y of RotY consisting of total rotation zero (i.e.,
even numbers of edge flips), this proves the following:

Lemma 8. 𝜋Y induces a surjection from Rub ∩ ker(𝜎Y ◦ 𝜋Y) onto Rot0
Y.

• Corner permutation. Permuting the corners uses the element (𝑏−1𝑎−1𝑏𝑎)3 from Rub. This
element fixes the edges - hence belongs to Rub ∩ GX - and it swaps the corners 𝑥𝑎𝑏𝑐 and
𝑥 𝑓 𝑐𝑏 (by swapping faces 𝑎 and 𝑓 ), and also 𝑥𝑎𝑑𝑏 and 𝑥𝑑𝑎𝑒 (by swapping faces 𝑏 and 𝑒), while
leaving the others fixed. In particular, its image in PermX is a product of two transpositions
with disjoint support.

Lemma 9. If 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 and 𝑥′1 , 𝑥
′
2 , 𝑥

′
3 , 𝑥

′
4 are two families of four distinct elements of X,

then there exists 𝑔 ∈ Rub such that 𝜋X(𝑔) · 𝑥𝑖 = 𝑥′
𝑖
for10 𝑖 = 1, 2, 3, 4.

Proof. It suffices to prove that one can map any family to a fixed family, for example:
𝑥𝑎𝑏𝑐 , 𝑥 𝑓 𝑐𝑏 , 𝑥𝑎𝑑𝑏 , 𝑥𝑑𝑎𝑒 ; indeed, if 𝑔 · 𝑥1 = 𝑥𝑎𝑏𝑐 , 𝑔 · 𝑥2 = 𝑥 𝑓 𝑐𝑏 , 𝑔 · 𝑥3 = 𝑥𝑎𝑑𝑏 , and 𝑔 · 𝑥4 = 𝑥𝑑𝑎𝑒 , and
likewise 𝑔′ · 𝑥′1 = 𝑥𝑎𝑏𝑐 , 𝑔′ · 𝑥′2 = 𝑥 𝑓 𝑐𝑏 , 𝑔′ · 𝑥′3 = 𝑥𝑎𝑑𝑏 , and 𝑔′ · 𝑥′4 = 𝑥𝑑𝑎𝑒 , then ((𝑔′)−1𝑔) · 𝑥𝑖 = 𝑥′

𝑖

for 𝑖 = 1, 2, 3, 4.

It is very easy to move any two corners to 𝑥𝑎𝑏𝑐 and 𝑥 𝑓 𝑐𝑏 , and since 𝑑 and 𝑒 fix 𝑥𝑎𝑏𝑐 and 𝑥 𝑓 𝑐𝑏 , it
is sufficient to prove that if 𝑥 ≠ 𝑥′ are two distinct corners different from 𝑥𝑎𝑏𝑐 and 𝑥 𝑓 𝑐𝑏 , there
exists an element 𝑔 in the subgroup G𝑑,𝑒 of Rub, generated by 𝑑 and 𝑒, such that 𝑔 · 𝑥 = 𝑥𝑎𝑑𝑏

and 𝑔 · 𝑥′ = 𝑥𝑑𝑎𝑒 .

Now, there exists ℎ ∈ G𝑑,𝑒 such that ℎ · 𝑥 = 𝑥𝑎𝑑𝑏 , and there are three cases:

– ℎ · 𝑥′ = 𝑥𝑎𝑑𝑒 : take 𝑔 = ℎ.

– ℎ · 𝑥′ = 𝑥𝑏𝑑𝑓 : take 𝑔 = 𝑑−1ℎ.

– ℎ · 𝑥′ is not on face 𝑏: then there exists 𝑘 such that 𝑒 𝑘 · (ℎ · 𝑥′) = 𝑥𝑎𝑑𝑒 , and take 𝑔 = 𝑒 𝑘 ℎ.

This completes the proof. □

Lemma 10. The image of Rub ∩ GX in PermX is the subgroup AltX of permutations of
signature 1 (i.e., the alternating group on X).

Proof. The image is contained in AltX because Rub is included in the kernel of 𝜀, and an
element of GX acts trivially on Y. Moreover, the properties of (𝑏−1𝑎−1𝑏𝑎)3 show that its
image in PermX contains a product of two disjoint transpositions (𝑥1 , 𝑥2)(𝑥3 , 𝑥4). Now, for
any 𝑔 ∈ Rub, the element 𝑔(𝑏−1𝑎−1𝑏𝑎)3𝑔−1 belongs to Rub ∩ GX, and its image in PermX is
(𝑔 · 𝑥1 , 𝑔 · 𝑥2)(𝑔 · 𝑥3 , 𝑔 · 𝑥4). Using the previous lemma, we deduce that the image contains all
products of two disjoint transpositions. Since |X| > 5, such products generate AltX, which
completes the proof. □

10We say that Rub acts 4-transitively on X, or that the action of Rub on X is 4-transitive.
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Solving Rubik’s Cube

• Corner orientation. Let Rot0
X be the subgroup of RotX consisting of elements of total rotation

zero (i.e., the kernel of rtX). We also have Rot0
X = H ∩ RotX, since an element of RotX is

already in the kernels of rtY ◦ 𝜋Y and 𝜀.

Lemma 11. We have Rot0
X ⊂ Rub.

Proof. Observe that the element 𝑒𝑑𝑒−1𝑑−1𝑒 fixes 𝑥𝑎𝑏𝑐 , 𝑥 𝑓 𝑐𝑏 , and 𝑥𝑎𝑑𝑏 , and rotates 𝑥𝑎𝑒𝑑 by one
third of a turn. Now, the element (𝑏−1𝑎−1𝑏𝑎)3 belongs to Rub ∩ G𝑥 and swaps the corners
𝑥𝑎𝑏𝑐 and 𝑥 𝑓 𝑐𝑏 , as well as 𝑥𝑎𝑑𝑏 and 𝑥𝑑𝑎𝑒 , while fixing the others. It follows that

(𝑏−1𝑎−1𝑏𝑎)3(𝑒𝑑𝑒−1𝑑−1𝑒)(𝑏−1𝑎−1𝑏𝑎)3(𝑒𝑑𝑒−1𝑑−1𝑒)−1

is an element of Rub ∩ ker(𝜋Y) that fixes all corners except 𝑥𝑑𝑎𝑒 and 𝑥𝑎𝑑𝑏 , each of which it
rotates by one-third of a turn (in opposite directions, since the total rotation is zero). In
other words, letting 𝑥1 = 𝑥𝑎𝑑𝑏 and 𝑥2 = 𝑥𝑑𝑎𝑒 , this element is (𝑛𝑥)𝑥∈X in Rot0

X, with: 𝑛𝑥 = 0 if
𝑥 ∉ {𝑥1 , 𝑥2}, and 𝑛𝑥1 + 𝑛𝑥2 = 0, and 𝑛𝑥1 ≠ 0. Since Rub acts 4-transitively on X (and thus in
particular 2-transitively), and since 𝑔ℎ𝑔−1 = (𝑛′𝑥)𝑥∈X with 𝑛′𝑥 = 𝑛𝑔·𝑥 , if ℎ = (𝑛𝑥)𝑥∈X, it follows
that Rub ∩ Rot0

X contains all elements of this type. Because these generate Rot0
X, we get

Rub ∩ Rot0
X = Rot0

X. This completes the proof. □

• The inclusion H ⊆ Rub. We can now prove the following result, which completes the proof
of Theorem 5.

Proposition 12. We have H ⊆ Rub.

Proof. Let us begin by noting that since Rub ⊆ H, the product of an element of Rub and an
element of H is still an element of H. Let ℎ ∈ H.

– Since 𝜎Y ◦ 𝜋Y induces (cf. Lemma 7) a surjection from Rub onto PermY, there exists
𝑔1 ∈ Rub such that 𝜎Y ◦ 𝜋Y(𝑔1) = 𝜎Y ◦ 𝜋Y(ℎ), and then ℎ1 = 𝑔−1

1 ℎ is an element of H that
lies in the kernel of 𝜎Y ◦ 𝜋Y.

– By Lemma 8, there exists 𝑔2 ∈ Rub such that 𝜋Y(𝑔2) = 𝜋Y(ℎ1), and so ℎ2 = 𝑔−1
2 ℎ1 is an

element of H that belongs to GX.

– We have 𝜀(ℎ2) = 1, and since ℎ2 acts as the identity on Y, the permutation 𝜎X(ℎ2) belongs
to AltX. By Lemma 10, this implies there exists 𝑔3 ∈ Rub∩GX such that 𝜎X(𝑔3) = 𝜎X(ℎ2),
and then 𝑔4 = 𝑔−1

3 ℎ2 is an element of H∩RotX. Now, H∩RotX = Rot0
X, which is included

in Rub by Lemma 11; thus 𝑔4 ∈ Rub.

– Since ℎ = 𝑔1𝑔2𝑔3𝑔4, it follows that ℎ ∈ Rub, which completes the proof.

□
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Supplementary Figures

A Supplementary Figures

This section is added by Seewoo Lee, which does not exist in the original document. Here we give
illustrative figures of the “formulas” used in the previous section, following more standard
notations used in the Rubik’s Cube community.

We denote the faces of the cubes as UDRLFB, which stands for Up, Down, Right, Left, Front,
and Back. These faces correspond to the previous section’s notations 𝑎𝑏𝑐𝑑𝑒 𝑓 as follows:

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

U F L R B D

Also, the counter-clockwise rotations of these faces are denoted as U’, D’, R’, L’, F’, and B’
respectively. Note that the action of Rub on the cube is left action, hence you need to read the
moves from right to left. However, the usual notation in the Rubik’s Cube community is right
action, and the sequence of moves is read from left to right. For example, the element 𝑎𝑏𝑐 with
the previous notation corresponds to the move sequence LFU in the new notation, which means
that you first do L (𝑐), then F (𝑏), and finally U (𝑎).

A.1 Edge permutation

The first step is to put the edges in the correct positions. The previous formula (𝑎2𝑏)5 is (FU2)5
in the new notation, which means that we do the following 5 times:

F U U

Figure 1: FU2 on a solved cube.

As described in the footnote 9, FU2 acts as a composition of 2-cycle (swapping white-blue
and white-green edges) and 5-cycle on the edges, and doing this 5 times will only swap the
white-blue and white-green edges, not flipping any edges of the cube.

(
F U U

)5

Figure 2: (FU2)5 on a solved cube. White-green and white-blue edges are swapped without flip.

Using conjugation, we can swap any two edges in the cube, by placing these two edges on
the top-left and top-right positions by some move 𝑔, applying the above formula, and then
returning the cube to its original position by 𝑔−1. For example, you can swap white-green and
orange-green edges with 𝑔 = F2L’ as in Figure 3. Repeating this process, you can place all the
edges in their correct positions.
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A.2 Edge orientation

F F L’

(
F U U

)5

L F F

Figure 3: 𝑔(FU2)5𝑔−1 with 𝑔 = F2L’ on a solved cube. White-green and orange-green edges are swapped without flip.

A.2 Edge orientation

Now, one need to flip the edges correctly. As mentioned in the previous section, the formula
𝑑2 𝑓 𝑏𝑑−1, which is R’FDR2 in the new notation, flips the white-green edge 𝑦UR while fixing the
white-blue edge 𝑦UL. Hence

ℎ = (R’FDR2)(FU2)5(R’FDR2)−1(FU2)5

flips 𝑦UR and 𝑦UL, leaving the other edges unchanged (Figure 4).

Figure 4: ℎ = (R’FDR2)(FU2)5(R’FDR2)−1(FU2)5 on a solved cube. White-green and white-blue edges are flipped.

Again, using conjugation, you can flip any two edges in the cube.

A.3 Corner permutation

For the corner permutation, we use (UFU’F’)3 which swaps two pairs of corners, 𝑥UFL ↔ 𝑥DLF
and 𝑥URF ↔ 𝑥RUB, while leaving the other edges and corners unchanged (Figure 5). Lemma
10 uses this move to show that any element of AltX can be reached with the legal moves.

(
U F U’ F’

)3

Figure 5: (UFU’F’)3 on a solved cube. White-green and white-blue edges are flipped.

A.4 Corner orientation

Finally, we need to orient the corners. The element 𝑒𝑑𝑒−1𝑑−1𝑒, which is BR’B’RB fixes three
corners 𝑥UFL, 𝑥DLF, and 𝑥URF, while rotating the corner 𝑥URB (Figure 6). Hence the element

(BR’B’RB)−1(UFU’F’)3(BR’B’RB)(UFU’F’)3

rotates exactly two corners 𝑥URF and 𝑥RUB in opposite directions, fixing other pieces (Figure
7).
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A.5 Putting it all together

Figure 6: BR’B’RB on a solved cube. White-green and white-blue edges are flipped.

Figure 7: (BR’B’RB)−1(UFU’F’)3(BR’B’RB)(UFU’F’)3 on a solved cube. Two corners 𝑥URF and 𝑥RUB are rotated,
whilte other pieces are unchanged.

A.5 Putting it all together

Following the above steps, we can solve the Rubik’s Cube in the following order:

1. Place the edges in their correct positions using (FU2)5 and its conjugates.

2. Flip the edges correctly using ℎ = (R’FDR2)(FU2)5(R’FDR2)−1(FU2)5 and its conjugates.

3. Place the corners in their correct positions using (UFU’F’)3 and its conjugates.

4. Rotate the corners correctly using (BR’B’RB)−1(UFU’F’)3(BR’B’RB)(UFU’F’)3 and its con-
jugates.
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