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Abstract

This is an expository note on the theory of Bruhat–Tits buildings, and

appplications to the Moy–Prasad filtration and Yu’s construction, with no

proofs. The main references of this note are Rabinoff’s senior thesis [17] and

Fintzen’s CDM & IHES lecture notes [5, 4].

1 Introduction

One of the fundamental goal of the representation theory is to classify all the

irreducible representations of a given group. In this seminar, we are I am inter-

ested in the representations of 𝑝-adic groups, such as SL𝑛(Q𝑝) or Sp
2𝑛(Q𝑝). As

in the finite group case, usual way to construct representations is by (parabolic,

compact, ...) induction. From this viewpoint, it is natural to ask what are the

“building blocks” of irreducible representations that might exhaust all the ir-

reducible representations by inducting them. The answer will be supercuspidal
representations.

Definition 1.1. An irreducible admissible representation (𝜋, 𝑉) of 𝐺(𝐹) is called

supercuspidal if every Jacquet module 𝑉𝑁 := 𝑉/⟨𝜋(𝑛)𝑣 − 𝑣 : 𝑛 ∈ 𝑁, 𝑣 ∈ 𝑉⟩
for parabolic 𝑃 = 𝑀𝑁 ⊂ 𝐺 is zero. Equivalently, their matix coefficients are

compactly supported modulo the center.

Supercuspidal representations are building blocks in the following sense:

Theorem 1.2 (Bernstein [1]). Let (𝜋, 𝑉) be an irreducible smooth representation

of 𝐺. Then there exists a parabolic subgroup 𝑃 ⊆ 𝐺 with Levi subgroup 𝑀 and

a supercuspidal representation (𝜎,𝑊) of 𝑀(𝐹) such that (𝜋, 𝑉) is a subrepresen-

tation of (Ind
𝐺(𝐹)
𝑃(𝐹)𝜎, Ind

𝐺(𝐹)
𝑃(𝐹)𝑊).
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So, how can we construct supercuspidal representations? One way to do

(at least, one way to construct a representation in an interesting way) is to

use induction from a compact subgroup. For example, consider the following

diagram:

GL2(Q𝑝)

GL2(Z𝑝) GL2(F𝑝)

Let’s assume that representations of finite groups are “easier” to understand.1

Once we have an irreducible representation 𝜌 of GL2(F𝑝) (which is a finite group),

we can pullback it to GL2(Z𝑝) and then induce it to GL2(Q𝑝). Then we may prey

that the induced representation is irreducible, or even supercuspidal. This

works sometimes - for example, if 𝜌 is a Weil representation of GL2(F𝑝), then the

pullbacked & induced representation is supercuspidal (you may find details

in [3, Chapter 4]). Howe [11] give a construction of a lot of supercuspidal

representations of GL𝑛(𝐹), which turned out to be exhaustive by Moy [14].

It is a folklore conjecture that all supercuspidal representations (of general re-

ductive groups) arise via compact induction from a representation of a compact-

mod-center open subgroup. Although we don’t know how to prove the conjec-

ture yet, most of the known constructions of the supercuspidal representations

would be based on the idea. Hence it is important to know what compact-mod-

center subgroups we need to consider and what representations of them we

need to induce. The naive answer that we’ll see is the following:

For each 𝐺, there exists a contractible complete metric space B(𝐺) called

Bruhat–Tits building where 𝐺(Q𝑝) acts nicely. Each point 𝑥 ∈ B(𝐺) gives a

Moy–Prasad filtration {𝐺𝑥,𝑟}𝑟∈R≥0
, compact open subgroups of the stabilizer

subgroup 𝐺𝑥 ⊂ 𝐺, whose quotients are Lie groups of finite type or abelian

groups. Yu’s construction produces a supercuspidal representation to

Yu’s datum, which consists of (i) a finite filtration 𝐺, (ii) a vertex in B(𝐺),
(iii) depth-zero cuspidal representation of the smallest subgroup in the

filtration, and (iv) generic characters of the filtration subgroups.

1Maybe not... but at least for small 𝑝’s, you can compute them by hand. In general, you may

need Deligne–Lusztig theory.
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2 Bruhat–Tits building

When we study representations of Lie groups 𝐺 (especially, infinite dimensional

representations), it is common to consider the cohomology of the associated

symmetric space 𝑋 = 𝐺(R)/𝐾 (𝐾 is a maximal compact subgroup of 𝐺(R)). For

example, discrete series of GL2(R) can be understood by line bundles on H±
.

Hence it is natural to ask if one can find an analogous space for 𝑝-adic groups to

study representations, and as you expected, the answer is Bruhat–Tits building.

Bruhat–Tits building B(𝐺) = B(𝐺,Q𝑝) of 𝐺 is a certain contractible and

complete metric space obtained by glueing bunch of apartments (which are also

called maximal flats), which are just Euclidean spaces, where 𝐺(Q𝑝) acts nicely.2

Each of apartment correspond to a maximal split tori, where the bĳection is

given by considering a stabilizer of the apartment in 𝐺(Q𝑝). The action of 𝐺(Q𝑝)
is transitive on the apartments, but not on vertices - the action is transitive on

vertices with same types.
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Figure 1: Bruhat–Tits building of SL2(Q3)

2In Bruhat–Tits building, people (points) are living in at least two apartments.
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For example, Figure 1 shows one the most famous Bruhat–Tits building that

you may find on Google, which isB(SL2(Q3)):3 It is an infinite 4-regular tree, and

in general, B(SL2(Q𝑝)) is a infinite (𝑝 + 1)-regular tree. Each vertex corresponds

to an isomorphism class of lattices in Q2

3
(up to homothety by Q×

3
), where two

of them are connected if and only if there exist representatives 𝐿, 𝐿′ of each

class such that 𝐿′ ⊂ 𝐿 and 𝐿/𝐿′ ≃ Z/3Z. For any given 𝐿 and 𝐿′, there exists

a basis {𝑒1, 𝑒2} of 𝐿 and integers 𝑎 ≥ 𝑏 such that {3𝑎𝑒1, 3𝑏𝑒2} form a basis of

𝐿′, where |𝑎 − 𝑏 | is equal to the distance between the corresponding points.

We have a natural action of SL2(Q3) on the tree via [𝐿] ↦→ [𝑔𝐿] (𝑔 ∈ SL2(Q3)),
and it preserves the metric. It is easy to check that the stabilizer of the point

corresponds to 𝐿0 = Z2

3
is SL2(Z3). Note that the action is not transitive on the

whole vertices, since 𝑑([𝐿], [𝑔𝐿]) is always even. In fact, it acts transitively on

the vertices with same colors in Figure 1.

Apartments of this tree are the infinite geodesics on it (which is uncountably

many), where each of them corresponds to a maximal split tori, i.e. a conjugation

of the diagonal torus

[
Q×

3

Q×
3

]
. For example, one can think the apartment for

the diagonal torus as a line containing all (equivalence classes of) the lattices

of the form 𝐿 = Z3

[
1

0

]
+ Z3

[
0

1

]
. The normalizer 𝑁 = 𝑁𝐺(𝑇) of the diagonal

torus acts on the line, where the action factors through the affine Weyl group �̃� ≃
𝑁/𝑇(Z3) ≃ Z ⋊ (Z/2), which is generated by reflections over affine hyperplanes.

See Serre’s book for more details [18, Chapter II].

More generally, we define apartment of a pair (𝐺, 𝑇) where 𝑇 is a maximal

torus of 𝐺 simply as A = A(𝐺, 𝑇) = 𝐸∗
, the Euclidean space containing the

coroots. Each apartment depends on the choice of 𝑇, and we glue all of them to

get the building:

B(𝐺) := (𝐺 ×A)/∼,

where the equivalence relation is given by (𝑔, 𝑥) ∼ (ℎ, 𝑦) iff ∃𝑛 ∈ 𝑁 such that

𝑛𝑥 = 𝑦 and 𝑔−1ℎ𝑛 ∈ Stab𝐺(𝑥). Intuitively, we are considering all the possible

reflections of A by �̃� , and glue them together through the reflections. We have

a natural metric induced from that of 𝐸∗
, where proving the triangle inequality

is nontrivial [2].

There’s more abstract way to define apartments and buildings, using affine

spaces and polysimplicial complexes. Although we only focus on the Bruhat–

Tits buildings coming from 𝑝-adic groups.

Here’s one nice application of the theory of buildings.

3The other one is B(SL2(Q2)).
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Theorem 2.1 (Cartan decomposition). Let 𝐺 = SL𝑛(Q𝑝) and 𝐾 = SL𝑛(Z𝑝) be a

maximal compact group. Let 𝐴 ⊂ 𝐺 be a maximal split torus (e.g. diagonals).

Then 𝐺 = 𝐾𝐴𝐾.

Proof. (This proof is stolen from Morris’ note [13].) Let ℎ ∈ 𝐺(Q𝑝). Let A ⊂
B(𝐺,Q𝑝) be an apartment corresponds to 𝐴 with base point 𝑥 ∈ A. Then there

exists an apartmentA′
that contains both 𝑥 and ℎ𝑥. Also, transitivity of the action

tells us that there exists 𝑔 ∈ 𝐺(Q𝑝) with A = 𝑔A′
, which fixes the intersection

A ∩ A′
, hence 𝑥. It means that 𝑔ℎ𝑥 ∈ A, and 𝑥 & 𝑔ℎ𝑥 have the same type, so

there exists 𝑎 ∈ 𝐴 such that 𝑎(𝑔ℎ𝑥) = 𝑥. Hence 𝑔 and 𝑎𝑔ℎ both belongs to the

stabilizer of 𝑥, which actually equals to 𝐾. Thus ℎ = 𝑔−1 · 𝑎−1 · (𝑎𝑔ℎ) ∈ 𝐾𝐴𝐾. □

3 Moy–Prasad filtration

Recall that all supercuspidal representations are conjecturally induced from

compact subgroups. Moy–Prasad filtration gives a partial answer to the question;

it is a filtration of 𝐺 attached to each point of B(𝐺), which is used to define depth
of representations. Especially, we can classify all the depth-zero supercuspidal

representations, where all of them arise as inductions of depth-zero minimal 𝐾
types.

Before we define the Moy–Prasad filtration, we introduce the notion of para-
horic subgroups, which are groups 𝐺𝑥 associated to each point 𝑥 ∈ B(𝐺). When

𝑥 ∈ A(𝐺, 𝑇), we define 𝐺𝑥 and its (pro-)unipotent radical 𝐺+
𝑥 as follows:

𝐺𝑥 := ⟨𝑇(Z𝑝), 𝑥𝛼(𝑝−⌊𝛼(𝑥)⌋) : 𝛼 ∈ Φ⟩ (1)

𝐺+
𝑥 := ⟨𝑇(1 + 𝑝Z𝑝), 𝑥𝛼(𝑝1−⌈𝛼(𝑥)⌉) : 𝛼 ∈ Φ⟩ (2)

Now, for an arbitary point 𝑥 ∈ B(𝐺), take 𝑥0 ∈ A(𝐺) and 𝑔 ∈ 𝐺 with 𝑥 = 𝑔 · 𝑥0.

Then we define 𝐺𝑥 := 𝑔𝐺𝑥0
𝑔−1

and 𝐺+
𝑥 := 𝑔𝐺+

𝑥0

𝑔−1
, which is independent of the

choice of 𝑥0 and 𝑔. Both of the groups only depends on the facet F containing

𝑥, and sometimes we denote them by 𝐺F and 𝐺+
F
. Note that the quotient 𝐺𝑥/𝐺+

𝑥

is always a Lie group of finite type, which we denote as G𝑥 .

Moy–Prasad filtration is a filtration of these two groups.

Definition 3.1 (Moy–Prasad filtration). Let 𝑥 ∈ A(𝐺, 𝑇). Moy–Prasad filtration

of 𝐺𝑥 and 𝐺+
𝑥 is given by, for each 𝑟 ∈ R≥0,

𝐺𝑥,𝑟 := ⟨𝑇(1 + 𝑝 ⌈𝑟⌉), 𝑥𝛼(𝑝−⌊𝛼(𝑥)−𝑟⌋) : 𝛼 ∈ Φ⟩ ⊂ 𝐺𝑥 (3)

𝐺𝑥,𝑟+ :=
⋂
𝑠>𝑟

𝐺𝑥,𝑠 (4)
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We can generalize the definition to any 𝑥 ∈ B(𝐺) similarly as before. It

is easy to check that for any 𝑥, 𝐺𝑥,0 = 𝐺𝑥 , 𝐺𝑥,0+ = 𝐺+
𝑥 , and {𝐺𝑥,𝑟}𝑟≥0 form a

decreasing filtration and a basis of open compact neighborhoods of the identity

in 𝐺. The parameter 𝑟 of the filtration is additive in the following sense: we have

[𝐺𝑥,𝑟 , 𝐺𝑥,𝑟′] ⊆ 𝐺𝑥,𝑟+𝑟′. Also, we have analogous filtrations 𝔤𝑥,𝑟+ ⊂ 𝔤𝑥,𝑟 ⊂ 𝔤𝑥 for

the Lie algebra 𝔤 = Lie(𝐺).
For example, consider𝐺 = SL2(Q3) again. There are essentially two (or three)

different possibilities: vertices or the points on the middle of the edges. There

are two different types of vertices, correspond to two different conjugacy classes

of maximal compact subgroups, which are

𝑥1 ↔
[
Z3 Z3

Z3 Z3

]
, 𝑥2 ↔

[
Z3 3Z3

1

3
Z3 Z3

]
.

For the point 𝑦 in the middle of 𝑥1 and 𝑥2, it corresponds to

𝑦 ↔
[
Z3 3Z3

Z3 Z3

]
.

The corresponding Moy–Prasad filtrations are given by

𝐺𝑥1 ,0 =

[
Z3 Z3

Z3 Z3

]
𝐺𝑦,0 =

[
Z3 3Z3

Z3 Z3

]
𝐺𝑥2

=

[
Z3 3Z3

1

2
Z3 Z3

]
⋃

⋃
𝐺𝑦,0.5 =

[
1 + 3Z3 3Z3

Z3 1 + 3Z3

] ⋃
⋃

𝐺𝑥1 ,1 =

[
1 + 3Z3 3Z3

3Z3 1 + 3Z3

]
𝐺𝑦,1 =

[
1 + 3Z3 3

3Z3

3Z3 1 + 3Z3

]
𝐺𝑥2 ,1 =

[
1 + 3Z3 3

3Z3

3Z3 1 + 3Z3

]
⋃

⋃
𝐺𝑦,1.5 =

[
1 + 3

3Z3 3
3Z3

3Z3 1 + 3
3Z3

] ⋃
...

...
...

They proved that any (smooth) representation of 𝐺(𝐹) possesses a vector

fixed by a group in the filtration.
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Theorem 3.2 (Moy–Prasad [15, Theorem 5.2]). If (𝜋, 𝑉) is a smooth representa-

tion of 𝐺, then there is a nonnegative real number 𝑟 = 𝜚(𝜋) with the property

that 𝑟 is the minimal number such that 𝑉𝐺𝑥,𝑟+ ≠ {0} for some 𝑥 ∈ B(𝐺).

We call the number 𝜚(𝜋) as the depth of 𝜋. Espeically, depth-zero repre-

sentation (𝜋, 𝑉) is a representation with 𝑉𝐺+
𝑥 ≠ {0}. Note that the depth of a

representation does not need to be an integer: we will see an example of depth

1

2
representation in Section 4.

Moreover, they proved that all the depth-zero supercuspidal representations

arise from the representations of finite groups, generalizing the construction of

representations of GL2(Q𝑝) in Section 1.

Definition 3.3. A depth-zero minimal 𝐾-type is a pair (𝐺𝑥 , 𝜏) where 𝑥 ∈ B(𝐺) and

𝜏 is a cuspidal representation of the finite group 𝐺𝑥/𝐺+
𝑥 , inflated to 𝐺𝑥 .

Theorem 3.4 (Moy–Prasad [15, 16]). Let (𝐺𝑥 , 𝜎) be a minimal 𝐾-type and E(𝜎) be

the set of irreducible representations of 𝐹𝑥 = 𝑁𝐺(𝐺𝑥) (up to equivalence) whose

restriction to 𝐺𝑥 contains 𝜎. Then for any 𝜏 ∈ E(𝜎), Ind
𝐺
𝐹𝑥
(𝜏) an irreducible

supercuspidal representation of 𝐺 (necessarily of depth-zero), and any depth-

zero irreducible supercuspidal representations arises from some 𝑥 ∈ B(𝐺) in

this way.

The construction of the cuspidal representations of “finite groups of Lie

type” (e.g. has a form of G(F𝑞) for some G/F𝑞 ) are usually understood by the

Deligne–Lusztig theory (ℓ -adic cohomology of a variety 𝑋/F𝑞 with G(F𝑞)-action

on it).

4 Yu’s construction

As a follow-up of Theorem 3.4, it is natural to ask how to construct supercuspidal

representations of positive depths. Following the folklore conjecture, our goal

is to generalize the construction of supercuspidal representations of GL2(Q𝑝)
mentioned above to general reductive groups, via the following diagram:

𝐺(𝐹)

𝐾 G(F𝑞)
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In other words, our goal is to find some compact-mod-center open subgroup

𝐾 of 𝐺(𝐹) and some representation 𝜌 of 𝐾 factors through a Lie group of finite

type G(F𝑞), such that the compact induction cInd
𝐺(𝐹)
𝐾

𝜌 is supercuspidal.

Using Moy–Prasad filtration, Yu constructed tons of supercuspidal represen-

tations of reductive groups. Yu’s data consists of the following ingredients:

Definition 4.1. Yu’s datum is a tuple

((𝐺𝑖)1≤𝑖≤𝑛+1, 𝑥, (𝑟𝑖)1≤𝑖≤𝑛 , 𝜌, (𝜓𝑖)1≤𝑖≤𝑛)

for some 𝑛 ∈ Z≥0, where

• 𝐺 = 𝐺1 ⊋ 𝐺2 ⊋ 𝐺3 ⊋ · · · ⊋ 𝐺𝑛+1 are twisted Levi subgroups of 𝐺 [5, Definition

4.1.1], which split over a tamely ramified extension of 𝐹,

• 𝑥 ∈ B̃(𝐺𝑛+1) ⊂ B̃(𝐺),

• 𝑟1 > 𝑟2 > · · · > 𝑟𝑛 > 0 are real numbers,

• 𝜌 is an irreducible representation of (𝐺𝑛+1)[𝑥] trivial on (𝐺𝑛+1)𝑥,0+, i.e. a

depth-zero representation,

• 𝜓𝑖 is a character of 𝐺𝑖+1 of depth 𝑟𝑖 ,

satisfying the following conditions:

• 𝑍(𝐺𝑛+1)/𝑍(𝐺) is anisotropic,

• the image [𝑥] of the point 𝑥 in B(𝐺𝑛+1) is a vertex,

• 𝜌|(𝐺𝑛+1)𝑥,0 is a supercuspidal representation of (𝐺𝑛+1)𝑥,0/(𝐺𝑛+1)𝑥,0+,

• 𝜓𝑖 is (𝐺𝑖 , 𝐺𝑖+1)-generic relative to 𝑥 of depth 𝑟𝑖 [5, Definition 4.1.3] for all

1 ≤ 𝑖 ≤ 𝑛 with 𝐺𝑖 ≠ 𝐺𝑖+1.

Here B̃(𝐺) is the enlarged (non-reduced) buliding,

B̃(𝐺) = B(𝐺) × (𝑋•(𝐺) ⊗Z R).

Theorem 4.2 (Yu [19]). Let ((𝐺𝑖)1≤𝑖≤𝑛+1, 𝑥, (𝑟𝑖)1≤𝑖≤𝑛 , 𝜌, (𝜓𝑖)1≤𝑖≤𝑛) be a Yu’s datum.

Define a compact-mod-center open subgroup 𝐾 of 𝐺(𝐹) as

𝐾 = (𝐺1)𝑥, 𝑟1
2

(𝐺2)𝑥, 𝑟2
2

· · · (𝐺𝑛)𝑥, 𝑟𝑛
2

(𝐺𝑛+1)[𝑥]
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and �̃� = 𝜌 ⊗ 𝜅 be a representation of 𝐾, where 𝜌 is trivially extended from

(𝐺𝑛+1)[𝑥] and𝜅 is a certain representation which is built out of𝜓𝑖’s via Heisenberg

representation (See [4, Section 3.8]). Then cInd
𝐺(𝐹)
𝐾

�̃� is a supercuspidal smooth

irreducible representation of 𝐺(𝐹) of depth 𝑟1.

Intuitively, you have a depth-zero supercuspidal representation of the small-

est group in the filtration (which are “multiplicative”), and enlarge it to a repre-

sentation of 𝐺(𝐹) by using “additive” characters 𝜓𝑖 .

For example, consider 𝐺1 = 𝐺 = SL2(Q3) again. Take 𝑛 = 1. Let 𝐺2 be the

non-split torus given by

𝐺2(𝐹′) =
{[

𝑎 𝑏

3𝑏 𝑎

]
∈ SL2(𝐹′) : 𝑎, 𝑏 ∈ 𝐹′

}
for all field extensions 𝐹′/Q3, which splits over a tame extensionQ3(

√
3). Let 𝑥 be

the unique point of B̃(𝑆,Q3) ⊂ B̃(𝐺,Q3). Let 𝑟1 = 1

2
and define𝜓1 : 𝐺2(Q3) → C×

as

𝜓1

([
𝑎 𝑏

3𝑏 𝑎

])
= 𝜑(2𝑏)

for a fixed additive character 𝜑 : Q3 → C×, which is nontrivial on Z3 but triv-

ial on 3Z3. Take 𝜌 to be the trivial representation of 𝐺2(Q3) = (𝐺2)[𝑥]. Then

((𝐺1, 𝐺2), 𝑥, 𝑟1, 𝜌,𝜓1) satisfies the conditions of Yu’s construction, and it pro-

duces a supercuspidal representation of depth
1

2
. In this case, the compact

subgroup is

𝐾 = {±1}𝐺𝑥, 1
4

=

{
±

[
1 + 3Z3 Z3

3Z3 1 + 3Z3

]
∈ SL2(Q3)

}
and �̃� is the character of 𝐾 given by �̃�(±1) = 1 and

�̃�

([
1 + 3𝑎 𝑏

3𝑐 1 + 3𝑑

])
= 𝜑(𝑏 + 𝑐).

Note that [𝑥] = 𝑦 ∈ B(SL2(Q3)) is the point on the middle of the edge of 𝑥1 and

𝑥2 in Section 2.

There was an error in the original proof [19] (due to a misprinted statement in

[9]), which was corrected by Fintzen [5] later (a counter example to the original

argument is also provided). Also, Fintzen, Kaletha, and Spice showed that

including a quadratic twist restores the validity of the original argument [7].
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Theorem 4.3 (Kim [12], Fintzen [6], Fintzen–Schwein [8]). Suppose that 𝐺 splits

over a tamely ramified field extension of 𝐹 (not necessarily characteristic zero).

Then every supercuspidal smooth irreducible representation of 𝐺(𝐹) arises from

Yu’s construction, i.e., via Theorem 4.2.

Kim proved the exhausitiveness for characteristic zero fields with very large
residue characteristic (with no effective bounds) [12], and Fintzen extended the

result to fairly large residue characteristics, i.e. when 𝑝 does not divide the order

of the Weyl group of 𝐺 [6]. Very recently, Fintzen and Schwein removed the

condition and proved the exhausitiveness for all 𝑝 [8].

It is natural to ask when two Yu’s data produce equivalent representations.

Hakim and Murnaghan [10] proved that two data produce equivalent repre-

sentations if and only if one can obtain one from the other by a sequence of

elementary transformation, 𝐺(𝐹)-conjugation and refactorization.
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