Seemoo

Reference : Ratinet Chap 4.
Recall that we (Brian) defined spherical / affine apartments
as
$$E^*$$
 with / without origin, for chosen moxtorus T.
Affine apartment $A = \mathcal{A}(G, T)$ has hyperplane structure
 $H_{d+n} = {}^{\circ} \ker (d+n)'' = {}^{\circ} \alpha : \alpha(\alpha-\alpha) + n = \alpha}$
 $\alpha : \Xi : n \in \mathbb{Z}$ (d+n is called affine lin. functional)
Affine Weyl group W is generated by reflections over
affine hyperplanes, seem.to $\mathbb{Z}^{|\Delta|} \approx W \propto N(T)/T(O)$.
In other words, $N(T)$ acts on \mathcal{A} through W .
Paraheric subgroup is : for $\alpha \in \mathbb{Z}^{1}$
 $G_{\alpha} = \langle T(O), f \mathcal{R}_{\alpha}(p^{-(d+n)G_{1}): \alpha \in \mathbb{Z}^{1} \rangle$
where \mathcal{R}_{λ} is most group (space) of $\mathcal{X}_{-}(CG)$.
(pn-) unipotent reduct of G_{α} is defined
 $G_{\alpha}^{+} = (T(1+p), f \mathcal{R}_{\alpha}(p^{-(d+n)T_{1}:so, \alpha \in \mathbb{Z}^{1} \rangle$
 $= \langle T((1+p), f \mathcal{R}_{\alpha}(p^{-(d+n)T_{1}:so, \alpha \in \mathbb{Z}^{1})$
 $= \langle T(1+p), f \mathcal{R}_{\alpha}(p^{-(d+n)T_{1}:so, \alpha \in \mathbb{Z}^{1})$

· B(G) admits natural G-action : g·[h,x] := [gh,x] • Each $g \in G$ gives $\mathcal{A} \longrightarrow \mathcal{B}$. $\alpha \longmapsto [g, \alpha]$. $1 \times 1 \times 03$. Especially, we identify of with geG geG geG· G-action on B does not preserve A in general, In fact, $Stab_{G}(A) = N$. . All maximal tori conjugate each other. For a new torus $gT = gTg^+$, define an apartment for it as $A(\overline{d}T) := d \cdot A(T) \cdot A(\overline{d}T) = A(\overline{d}T)$ $\mathcal{H} = \mathcal{H} = \mathcal{H} = \mathcal{H}$ Conchorate subgroups of $\alpha \in \mathcal{D}(\mathcal{G})$ is : thoose $g \in \mathcal{G}$, $\alpha \in \mathcal{A}$ s.t. $\alpha = g\alpha_0$. Define $\mathcal{G}_{\alpha}^{(+)} = g \mathcal{G}_{\alpha\omega}^{(+)} g^{-1}$. · Facet of B = g · (facet of A). Action is transitive on maximal facets.

Compare W/ another down in Setre "Troce"

$$OB(SL_{2}(F))$$
 is a tree, where
 $vertices$: Isomorphism (i.e. homothety) class of
 $lattices$ in $F^{e_{2}}$ (i.e. Are O_{F} -submodule)
 $edger$: [L] and [L') connected if L'e L
and $L/L' \simeq (F_{F}, +)$.
Natural action : $geSL_{2}(F)$, $ge[L] := [geL]$
Metric : For any L.L', I basis $fb..v_{2}f$ of L st.
 $L' = v_{2}^{e_{2}}v_{1}ev_{2}$, $a \ge b \in \mathbb{Z}$. Then $d(I(L),(L_{1})) := a-b$
 $SL_{2}(F) - invariant.
This is in bijection w/ above definition
. "standard" apontment. $A \simeq 1 \times A \subset OB$
 $e = [attice of the form $v_{2}^{e_{1}}e_{1}ev_{2}ev_{2}(F)$.
 $T(F) = \{(\# \times)\}$ acts as translation k reflection
 $N(T) = \{(\# \times)\}$ $v_{1}(*)$$$