$$\begin{array}{c} \underbrace{[b_{1}b_{1}b_{2}}{220} & \operatorname{Supplet}_{U_{2}} \int_{U_{2}} \int_{$$

Eval.
$$\begin{pmatrix} 0 \\ p \\ 0 \end{pmatrix}$$
 is in $P(l_2(k))$ but not in the image of $SL_2(k)$.

Now we can make a table with groups of internat for as (everything is split here).

G	6(10)' ((k)) ((() ⁰	16(4)4	
6Ln/k	SIn(b. 0xil	u	n	SLn(k)	
		T			
S(n 1k	Sha(k)	/ u	þ	h	
P61n/k	(6Ln(k)	١,	indux n subpp = in(Shn(15)=210hn(15)	Ų	
split trong S/k	َنْ ۶ (۵) ⁽	n	v	ч	
	$- \begin{pmatrix} 0^* & 0^* \\ 0^* & 0^* \end{pmatrix}$	ļ	,		

Now we can define the pervasion subgroup and other branded subgroups associated to an apartment we still work in the split case. We have not unipole subgroup the for df \overline{P}_{i} with $M_{d} = G_{a}$ non-containing. So the draw the are canonically inversible in G_{i} leader G_{Si} and non-containing. The set a <u>Chardley Sittem</u>, i.e. a compatible (bold of U_{a} : $G_{a} \gg 0$ (equivalent to chards claum) $du_{a}(V) = X_{a} \in \mathcal{G}_{a}(a)$ then we get a bandpoint $O \in A(S)$ So the G(S) we construct a parahenric $P_{X} = (S(K)^{O}, u_{d}(m^{-La(M)})) > C(G(K)^{O}, S_{O})$ Both U_{a} and a(x) defined an the barghirh and they carely out so that P_{X} defined on M_{a} but on the models the minimum X. Then R_{X} is also $(s(t)^{O} - s(t)M)^{CR}$. The $P_{X} = N_{G}(\mu(t)) > C(G(K)^{O}, S_{O})$ Then P_{X} is also $(s(t)^{O} - s(t)M)^{CR}$. The $P_{X} = N_{G}(\mu(t)^{CR}) > S_{O}$ is an unit. $P_{X} = G(D_{X})^{CR}$. Then P_{X} is also $(s(t)^{O} - s(t)M)^{CR}$ is the interdention of $(h)_{C}(\mu(t)^{CR}) > S_{O}$ is the form $M_{A} = G(D_{X})^{CR}$. For now into an this fail, see the lost pergraph to the interdention of $(h)_{C}(\mu(t)^{CR}) > S_{O}$ is $M_{O} = 76.4^{O}$. The group is also a construction by looking at the stabiliter where the conjection of $G(K)^{*}$, when $K = 0/1/4^{O}$ and $M_{O} = 76.4^{O}$. The group is the $G(K)_{X}$ is the stabiliter of $x \in M_{O}$ by the action of $G(K)^{*}$, when $K = 0/1/4^{O}$ and $M_{O} = 57.6^{O}$. The group is the $G(K)_{X}$ is the stabiliter of $x \in M_{O}$ by the action of $G(K)^{*}$, when $K = 0/1/4^{O}$ and $M_{O} = 57.6^{O}$. The group is the $M_{O} = 76.4^{O}$.

Eq. To general, this is not time for 6161'. (outline $\begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix}$, the standard chamber for Poly(E). $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & m \\ m^{'} & 0 \end{pmatrix}$, the standard chamber for Poly(E). Then $\begin{pmatrix} n \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} m^{'} \\ m^{'} \end{pmatrix} = \begin{pmatrix} n \\ m^{'} \end{pmatrix} \begin{pmatrix} m^{'} \\ m^{'} \end{pmatrix} = \begin{pmatrix} 0 & m \\ m^{'} & 0 \end{pmatrix} = \begin{pmatrix} 0 & m \\ m^{'} & 0 \end{pmatrix}$, $\begin{pmatrix} n \\ m^{'} \end{pmatrix} \begin{pmatrix} 0 & m \\ m^{'} & 0 \end{pmatrix} \begin{pmatrix} m^{'} \\ m^{'} \end{pmatrix} = \begin{pmatrix} n \\ m^{'} & m^{'} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ m^{''} & m^{'} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. So $\begin{pmatrix} n^{''} \end{pmatrix}$ statistic this chamber, but not pointwise.

So f_{1-a} that F_{1} be define $G(k_{1}) = CG(k_{1}) = \frac{1}{2}$ being pointinue stabilities (stabilities of F in G(k)'. <u>Warning</u>: The book also define $G(k_{1})^{\#}_{A}$, but this dount have an intermination in terms of stabilities.

$$\begin{array}{c} \left(\begin{smallmatrix} 0 & m \\ m & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & 0 \\ m & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 0 & m \\ 0$$

May -Proval subgroups In general, defining the May-Proval subgroups of parakheric subgroups required us to have a fittentian
on the unipotent groups (UGB) at a point x (A(s), as well as on S(k) ital).
The N-inductul filtration on Ula is canonical (D((6,1.2)) but there is much freedom for the filtration on the key
(more specification Z(k)). For the split and quoid-prite (out), Z is a form T and there is a convinue filtration given below.
Det(May-Proval):

$$Det(May-Proval):$$

 $Det(May-Proval):$
 $T(k)_{f} = [((T(k)_{0} | w(X(U-1))Zr (HX(eX)T)))$
 $P_{X_{1}r} := (T(k)_{f} | u_{0}(m^{-Lek(1+r)})))$
 $P_{K_{1}r} := (P_{X_{1}} | P_{X_{1}s} | P_{X_{1$

Figure 5.1: Some Moy-Prasad filtration subgroups for $SL_2(k)$. The affine apartment for $SL_2(k)$ is the bottom line in the figure.

Quasi-split call key preparty that makes this case will? ZG(S) = Transitional terms. maximally split tom No drivitanic land = (Z(S), EU(S)) As all no xinal split tori an G(k)-conj, all no ximilly split naximal ton' are G(k-ronj, There is only one continuation (S, T) up to G(k)-ronjugacy. We have a relative nost system $\overline{\Psi}$: $\overline{\Psi}$ (log S), with all four versions the same. The abolat root with correst from $\overline{s} = \overline{\sigma}(G_{ks}, T_{ks})$. Let Θ be the balois gp (action). Then $\frac{1}{2}b \times (S) = \times (T)_{\Theta, free}, \times (S) = \times (T), and <math>\overline{\Psi} \cup \{\delta\}$ is the image of $\overline{\Psi}$ under the comparison map $\times (T) \rightarrow \times (S)$. Two types of roots (and uniputat subgroups) for S. YR (: RZO-01) = a. (non multipliable/divisive) Then some number of roots in \$\$ mop to \$\$, with a transitive \$\$-action. Take a representative $\tilde{a} \in \tilde{\Phi}$, so $U_{\tilde{a}} \cap \tilde{b}_{\sigma}$ over $k_{\tilde{\sigma}}$, the fixed field of the Grathian on \tilde{a} . Then Ua = Reskark Uá is commutative. Type 2/3'. R = a n = Ed, 2a3. Then have some number of triply &, &, & with & & & b mapping to a, a, 79, mpr. Norly. Then Ug=Ristark Ucar, Ucar= Ug Ug Ug is a 3-dim. non-romm. uniportant group. Gra- quaji-split SUIS(16) has related root system coming from comi fir quodinati extrain lik Unreally, all the definitions are the same as above (first page of notes): A(S) based on R. X+ (SJerl, etc. Only need to really figure out the unipotent group filtrations (on Uc). See § 3.2 and § 6. (b)