Math 113(4) - Comments for HW8

Seewoo Lee

October 20, 2018

Some general comments:

- 1. Please use staplers or clips, not just fold the left-upper corner of papers!
- 2. Try to write well! maybe this will be harder than the first one...
- 3. If you can, try to use $\mathbb{L}T_{EX}$.
- 4. For questions that requires proofs, I almost not give any partial credits.

Problem 1 (Section 14, Exercise 39)

You have to show well-definedness (2.5 points) and it is a homomorphism (2.5 points).

Problem 2 (Section 15, Exercise 40)

- 1. HN is a subgroup of G:
 - (a) HN is nonempty and has an identity. (+0.5)
 - (b) HN is closed under multiplication. (+1.5)
 - (c) HN is closed under taking inverse. (+1.5)
- 2. HN is a smallest subgroup of G containing both N and H. (+1.5)

Note that for $n \in N$ and $h \in H$, $nh \neq hn$ in general.

Problem 3

To use first isomorphism theorem you must check all the conditions.

- 1. For a),
 - (a) Define $\phi : \mathbb{C}^{\times} \to U$ as $z \mapsto z/|z|$, or $re^{i\theta} \mapsto e^{i\theta}$ in a polar coordinate. (+1)

- (b) ϕ is a homomorphism. (+0.5)
- (c) ϕ is surjective. (+0.5)
- (d) $\ker(\phi) = \mathbb{R}^+$. (+0.5)
- 2. For b),
 - (a) Define $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ as $(a, b) \mapsto 2a b$. (+1)
 - (b) ϕ is a homomorphism . (+0.5)
 - (c) ϕ is surjective. (+0.5)
 - (d) $\ker(\phi) = \langle (1,2) \rangle$. (+0.5)

Without first isomorphism theorem, you can define an appropriate homomorphism from $\mathbb{C}^{\times}/\mathbb{R}^+ \to U$ and show its well-definedness, homomorphism, injectivity and surjectivity.

Problem 4

For a), unit of \mathbb{Z} is 1 and -1. If you only mentioned 1, I deducted 0.5 point. Also, $0 \in \mathbb{Q}$ is not a unit in \mathbb{Q} , and if you contained (1, 0, 1) in your answer, I deducted 0.5 point.

For b), you have to show that if such homomorphism exists, then it should be $\phi(2) = 3$ or $\phi(2) = -3$ (1.5 points), and this gives a contradiction since $\phi(4) = \phi(2+2) = \phi(2) + \phi(2) = 6$ but $\phi(4) = \phi(2 \times 2) = \phi(2) \times \phi(2) = 9$ (1 point). You can also show in the following way: if $\phi(2) = 3n$, then $\phi(2 \times 2) = \phi(2+2)$ implies $9n^2 = 6n$, which gives n = 0, so ϕ is not injective.

Problem 5 (Section 18, Exercise 50)

You have to show that I_a is

- 1. closed under addition, (+1.5)
- 2. closed under multiplication, (+1.5)
- 3. closed under additive inverses, (+1.5)
- 4. and nonempty. (+0.5)