Quiz 4

True/False - No explanation needed. (2pts)

1. Mathematical induction can't be used to prove statements without any explicit mathematical equations. True/False

sol. It can be used to prove statements without any explicit equations. Think about the examples that we did in the class: Odd-pie fighting or dividing squares into smaller squares.

2. When calculating the probability P(A) for some event $A \subseteq \Omega$ on an "equally likely" finite probability space (Ω, P) , we can simply count the number of outcomes of A (the good possibilities) and divide that by all outcomes in Ω (all possibilities). **True**/False

Problems - Need justification. No justification means zero!

1. What is the probability that when you roll a fair die 8 times, you never get a multiple of 3? (5pts)

sol. The probability space has 6^8 elements, which are all the possible cases that can occur when we roll a fair dice 8 times. Now there are 4 numbers on a dice which are not multiples of 3 (1, 2, 4, 5), so there are 4^8 number of cases that contains so multiples of 3 while rolling a dice 8 times. Thus the probability is

$$\frac{4^8}{6^8} = \frac{2^8}{3^8}$$

- 2. Let $\{a_n\}_{n\geq 1}$ be a sequence defined by $a_1 = 1, a_2 = 4$ and $a_{n+2} = 2a_{n+1} a_n + 2$. Prove that $a_n = n^2$ for all $n \geq 1$, by using mathematical induction. (5pts)
 - *sol.* Basis step: for n = 1, 2, we have $a_1 = 1 = 1^2$ and $a_2 = 4 = 2^2$.

Inductive step: assume that the statement is true for some n and n+1. So we have $a_n = n^2$ and $a_{n+1} = (n+1)^2$. Then we have

$$a_{n+2} = 2a_{n+1} - a_n + 2$$

= 2(n+1)² - n² + 2
= 2n² + 4n + 2 - n² + 2
= n² + 4n + 4 = (n+2)²,

so the equation is also true for n + 2. Thus the equation is true for all $n \ge 1$.