Quiz 8

True/False - No explanation needed. (2pts)

1. For any random variable X, we have $E[X^2] \ge E[X]^2$. True/False

sol. We have $\operatorname{Var}[X] = E[X^2] - E[X]^2$, and variance of random variable is always non-negative.

2. According to the Law of Large Numbers, the probability $P(|\overline{X} - \overline{\mu}| > \epsilon)$ decreases as n grows. True/**False**

sol. As n grows to ∞ the probability mass becomes more and more concentrated around the mean μ . However, for specific ϵ and n it may be the case that the probability increases slightly when we take the average of n + 1 random variables rather than n.

Problems - Need justification. No justification means zero!

In this problem, we will approximate the following summation

$$\sum_{k=45}^{55} \binom{100}{k} \frac{1}{2^{100}}$$

using the standard normal distribution and the Central Limit Theorem. Let X_1, \ldots, X_{100} be the Bernoulli variables with p = 1/2. Let $\overline{X} = \frac{X_1 + \cdots + X_{100}}{100}$ be the average, and let Z be the normalized RV corresponding to \overline{X} .

1. Find the range of \overline{X} , $\overline{\mu}$, and $\overline{\sigma}$. (3pts)

sol. Since the range of each X_i s are $\{0, 1\}$, the range of $X_1 + \dots + X_{100}$ is $\{0, 1, \dots, 100\}$, and so $R_{\overline{X}} = \{0, \frac{1}{100}, \frac{2}{100}, \dots, 1\}$. Since X_1, X_2, \dots are IIDRVs, we have

$$\overline{\mu} = \mu = \frac{1}{2}, \quad \overline{\sigma} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{2} \cdot \frac{1}{2}} \cdot \frac{1}{\sqrt{100}} = \frac{1}{20}$$

2. Explain why $P(|\overline{X} - \overline{\mu}| \leq \frac{1}{20})$ is same as the above summation. (3pts)

sol. The inequality is equivalent to $-\frac{1}{20} \leq \overline{X} - \frac{1}{2} \leq \frac{1}{20} \Leftrightarrow 45 \leq X \leq 55$ where $X = X_1 + \cdots + X_{100}$. You can check that the random variable X follows the binomial distribution with n = 100 and $p = \frac{1}{2}$, so

$$P(45 \le X \le 55) = \sum_{k=45}^{55} P(X=k) = \sum_{k=45}^{55} {\binom{100}{k}} \left(\frac{1}{2}\right)^k \left(1 - \frac{1}{2}\right)^{100-k} = \sum_{k=45}^{55} {\binom{100}{k}} \frac{1}{2^{100}}.$$

3. Using the given part of the standard normal table, approximate $P\left(|\overline{X} - \overline{\mu}| \leq \frac{1}{20}\right)$. (4pts)

sol. Consider the normalized random variable

$$Z = \frac{\overline{X} - \overline{\mu}}{\overline{\sigma}} = \frac{\overline{X} - 1/2}{1/20}$$

which satisfies E[Z] = 0 and SE[Z] = 1. In terms of this random variable, the probability is same as

$$P(|\overline{X} - \overline{\mu}| \le \frac{1}{20}) = P(|Z| \le 1) = P(-1 \le Z \le 1),$$

and we can approximate this by standard normal distribution. In the table, you can see that the z-score for z = 1 is 0.3413, and this gives the value $P(0 \le Z \le 1)$. Hence $P(-1 \le Z \le 1) = 2 \cdot P(0 \le Z \le 1) = 0.6826$ since the standard normal distribution is symmetric.

z	0.00	0.01	0.02	0.03	0.04	0.05
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0190
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734
0.8	0.2881	0.2910	0.2939	0.2969	0.2995	0.3023
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3513