True/False - No explanation needed. (2pts)

1. The z-score that we can use to compute $P(0 \le \overline{X} \le \overline{\mu} + z\overline{\sigma})$ can be equivalently seen in the probability $P(0 \le Z \le z)$. True/**False**

sol. The inequality $0 \leq \overline{X} \leq \overline{\mu} + z\overline{\sigma}$ is equivalent to $-\frac{\overline{\mu}}{\overline{\sigma}} \leq Z \leq z$, so the probability $P(0 \le \overline{X} \le \overline{\mu} + z\overline{\sigma})$ is same as $P(-\frac{\overline{\mu}}{\overline{\sigma}} \le Z \le z)$.

2. If two random variables X and Y are independent, then $Var[X+Y] = Var[X-Y]$. True/False

sol. Since X and Y are independent, we have $Var[X + Y] = Var[X] + Var[Y]$. Similarly, we have $Var[X - Y] = Var[X + (-Y)] = Var[X] + Var[-Y] = Var[X] + (-1)^2 Var[Y] =$ $Var[X] + Var[Y]$. So $Var[X + Y] = Var[X] + Var[Y] = Var[X - Y]$.

Problems - Need justification. No justification means zero!

1. Let X_1, X_2 be independent geometric random variables with probabilities p_1 and p_2 , respectively. Let $Y = X_1 + X_2$. Find Cov $(X_1, 2Y)$. (5pts)

sol. By definition and the properties of expected value, we have

$$
Cov(X_1, 2Y) = E[X_1 \cdot 2Y] - E[X_1]E[2Y]
$$

= $2E[X_1Y] - 2E[X_1]E[Y]$
= $2(E[X_1(X_1 + X_2)] - E[X_1]E[X_1 + X_2])$
= $2(E[X_1^2 + X_1X_2] - E[X_1]^2 - E[X_1]E[X_2])$
= $2(E[X_1^2] + E[X_1X_2] - E[X_1]^2 - E[X_1]E[X_2])$

Since X_1 and X_2 are independent, we have $E[X_1X_2] = E[X_1]E[X_2]$. Hence the two terms cancel out and

$$
Cov(X_1, 2Y) = 2(E[X_1^2] - E[X_1]^2) = 2Var[X_1] = \frac{2(1 - p_1)}{p_1^2}.
$$

2. Using the given part of the standard normal table, find the value of $P(1.7 \le X \le 2.5)$, where X follows the normal distribution with $E[X] = 1$ and $Var[X] = 4$. (5pts)

sol. We have $\mu = 1$ and $\sigma =$ √ $4 = 2$. Then the normalized random variable

$$
Z = \frac{X - 1}{2}
$$

will follow the standard normal distribution. We have

$$
1.7 \le X \le 2.5 \Leftrightarrow 0.7 \le X - 1 \le 1.5 \Leftrightarrow 0.35 \le \frac{X - 1}{2} \le 0.75,
$$

so $P(1.7 \le X \le 2.5) = P(0.35 \le Z \le 0.75) = P(0 \le Z \le 0.75) - P(0 \le Z \le 0.35)$. If you see the table, this is $0.2734 - 0.1368 = 0.1366$.