Basics of counting

- 1. How many different three-letter initials are there that begin with an A? Contain an A? $1 \times 26 \times 26 = 676$, at least one A: $26^3 25^3 = 1951$, exactly one A: $3 \times 25 \times 25 = 1875$.
- 2. How many 6-element RNA sequences
 - (a) end with GU? $4^4 = 256$
 - (b) contain only A or U? $2^6 = 64$
- 3. (a) How many different functions are there from a set with n elements to a set with m elements? m^n
 - (b) How many different injective functions are there from a set with n elements to a set with m elements? You may assume $n \leq m$. $m(m-1)\cdots(m-n+1)$.
- 4. How many positive integers between 100 and 999 inclusive
 - (a) are divisible by 7? |900/7| = 128
 - (b) are divisible by 3 or 4? $\lfloor 900/3 \rfloor + \lfloor 900/4 \rfloor \lfloor 900/(3 \times 4) \rfloor = 300 + 225 75 = 450$
 - (c) are divisible by 3 but not by 4? $\lfloor 900/3 \rfloor \lfloor 900/(3 \times 4) \rfloor = 300 75 = 225$.
 - (d) if we change the range from $100 \sim 999$ to $100 \sim 1000$, how the answer for (b) will be changed? $\lfloor 901/3 \rfloor + \lfloor 901/4 \rfloor + 1 \lfloor 901/(3 \times 4) \rfloor = 300 + 225 + 1 75 = 451$
- 5. How many strings of 5 decimal digits
 - (a) do not have the same digit? $10 \times 9 \times 8 \times 7 \times 6 = 30240$
 - (b) do not have two consecutive digits that are the same? $10 \times 9 \times 9 \times 9 \times 9 = 65610$
 - (c) start with an odd digit? $5 \times 10 \times 10 \times 10 \times 10 = 50000$
 - (d) end with an odd digit? $10 \times 10 \times 10 \times 10 \times 5 = 50000$
 - (e) do not have the same digit and end with an odd digit? $5 \times 9 \times 8 \times 7 \times 6 = 15120$

Note. Strings of 5 decimal digits contain strings that starts with 0, for example, 00254.

- 6. How many diagonals does a convex polygon with n sides have? n(n-3)/2
- 7. In how many ways can a photographer at a wedding arrange six people in a row, including the bride and groom, if
 - (a) the bride must be next to the groom? $2 \times 5 \times 4! = 240$
 - (b) the bride is not next to the groom? 6! 240 = 480
 - (c) the bride is positioned somewhere to the left of the groom? 6!/2 = 360

Source: Rosen's Discrete Mathematics and its Applications.