Algorithms

- 1. Demonstrate bubble sort to sort the list 3, 4, 2, 1.
- 2. Demonstrate the quick sort to sort the list 3, 6, 2, 5, 1, 4.
- 3. Demonstrate the stable matching algorithm when men and women have the preferences $m_1: w_1 > w_2, m_2: w_1 > w_2$ and $w_1: m_1 > m_2, w_2: m_1 > m_2$.
- 4. Three women A, B, C are proposing to men E, F, G. Their preferences are as follows:

		C			
E > G > F	E > G > F	G > E > F	C > A > B	A > B > C	B > C > A

Show the stable matching algorithm with the women proposing to the men by clearly showing all rounds in a table.

5. Sort the list 2, 1, 6, 4, 5, 3 using both bubble sort and quicksort.

Inductions

6. Prove using mathematical induction that for all $n \ge 1$,

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n - 1)}{2}$$

7. Prove that

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

- 8. (*) Prove using mathematical induction that for all $n \ge 1$, $6^n 1$ is divisible by 5.
- 9. Let $\{a_n\}_{n\geq 1}$ be a sequence defined as $a_1 = 1$ and $a_{n+1} = \sqrt{a_n + 2}$. Prove that $a_n \leq 2$ for all $n \geq 1$, by using mathematical induction.