Algorithms

1. Demonstrate bubble sort to sort the list 3, 4, 2, 1.

Solution: On the first pass, we go $3421 \rightarrow 3241 \rightarrow 3214$, on the next pass we do $3214 \rightarrow 2314 \rightarrow 2134$ and on the third pass we do $2134 \rightarrow 1234$ and on the fourth pass, we make no changes which means the algorithm terminates.

2. Demonstrate the quick sort to sort the list 3, 6, 2, 5, 1, 4.

Solution: First we place the first number in the appropriate position and put the numbers smaller before it and the numbers larger after while preserving their relative order to get $362514 \rightarrow 213654$. Now we do the same on the smaller numbers and the larger to get $21 \rightarrow 12$ and $654 \rightarrow 546 \rightarrow 456$. This finally sorts the list as 123456.

3. Demonstrate the stable matching algorithm when men and women have the preferences $m_1: w_1 > w_2, m_2: w_1 > w_2$ and $w_1: m_1 > m_2, w_2: m_1 > m_2$.

Solution: Both men will propose to woman 1 and she will choose man number 1. Then man 2 will propose to his next option which is woman 2 and she will accept him. Thus, we get the final pairing $(m_1, w_1), (m_2, w_2)$.

4. Three women A, B, C are proposing to men E, F, G. Their preferences are as follows:

А	В	С	E	F	G
E > G > F	E > G > F	G > E > F	C > A > B	A > B > C	B > C > A

Show the stable matching algorithm with the women proposing to the men by clearly showing all rounds in a table.

Solution:	Men	Rd 1	Rd 2	Rd 3	Rd 4	$\operatorname{Rd}5$
	Е	А, В	А	\mathbf{A}, \mathbf{C}	С	С
	F					Α
	G	С	C, B	В	B, A	В

5. Sort the list 2, 1, 6, 4, 5, 3 using both bubble sort and quicksort.

Solution:

Using bubble sort, we get

 $216453 \rightarrow 124536 \rightarrow 124356 \rightarrow 123456$

Using quicksort using the last number as a pivot, we get

```
216453 \rightarrow 213645 \rightarrow (12)3(456).
```

Inductions

6. Prove using mathematical induction that for all $n \ge 1$,

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n - 1)}{2}.$$

Solution: Basis step: for $n = 1, 1 = \frac{1(3 \cdot 1 - 1)}{2}$.

Inductive step: suppose that the equation is true for n, so that

$$\sum_{k=1}^{n} (3k-2) = \frac{n(3n-1)}{2}.$$

Then

$$\sum_{k=1}^{n+1} (3k-2) = \sum_{k=1}^{n} (3k-2) + (3n+1) = \frac{n(3n-1)}{2} + (3n+1)$$
$$= \frac{3n^2 - n + 6n + 2}{2} = \frac{3n^2 + 5n + 2}{2} = \frac{(n+1)(3n+2)}{2}$$
$$= \frac{(n+1)(3(n+1)-2)}{2}$$

so it is also true for n + 1. Hence it is true for all n by mathematical induction.

7. Prove that

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}.$$

Solution: Basis step: for $n = \overline{1, \frac{1}{1 \cdot 3} = \frac{1}{3}}$.

Inductive step: suppose that the equation is true for n, so that

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}.$$

Then

$$\sum_{k=1}^{n+1} \frac{1}{(2k-1)(2k+1)} = \sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2n+1)(2n+3)}$$
$$= \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} = \frac{n(2n+3)+1}{(2n+1)(2n+3)}$$
$$= \frac{2n^2 + 3n + 1}{(2n+1)(2n+3)} = \frac{(2n+1)(n+1)}{(2n+1)(2n+3)}$$
$$= \frac{n+1}{2n+3}$$

so it is also true for n + 1. Hence it is true for all n by mathematical induction.

8. (*) Prove using mathematical induction that for all $n \ge 1$, $6^n - 1$ is divisible by 5.

Solution: Basis step: for $n = 1, 6^1 - 1 = 5$ is divisible by 5.

Inductive step: suppose that $6^n - 1$ is divisible by 5 for n. Then

$$6^{n+1} - 1 = 6(6^n - 1) + 6 - 1 = 6(6^n - 1) + 5.$$

Since both $6^n - 1$ and 5 are multiple of 5, so is $6^{n+1} - 1$. Hence it is true for all n by mathematical induction.

9. Let $\{a_n\}_{n\geq 1}$ be a sequence defined as $a_1 = 1$ and $a_{n+1} = \sqrt{a_n + 2}$. Prove that $a_n \leq 2$ for all $n \geq 1$, by using mathematical induction.

Solution: Basis step: for n = 1, $a_1 = \overline{1 \leq 2}$.

Inductive step: suppose that $a_n \leq 2$ for n. Then

$$a_{n+1} = \sqrt{a_n + 2} \le \sqrt{2 + 2} = 2,$$

so it is also true for n + 1. Hence it is true for all n by mathematical induction.