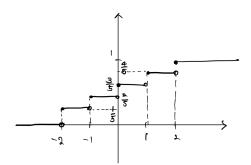
Week 8

PMF, PDF, CDF

1. Find a value c such that the given function became PDF. If there's no such c, explain why. Also, find corresponding CDFs and compute $P(0 \le X \le 2)$.


(a)
$$f(x) = \begin{cases} c & 0 \le x \le 25 \\ 0 & \text{otherwise} \end{cases}$$

(b)
$$f(x) = \begin{cases} cx(1-x) & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

(c)
$$f(x) = \begin{cases} c(x^2-1) & -2 \le x \le 2 \\ 0 & \text{otherwise} \end{cases}$$

(d)
$$f(x) = ce^{-|x|}$$

- 2. Find CDF of a binomial distribution with n = 4, p = 1/2.
- 3. (*) Find CDF of a geometric distribution with p = 1/3.
- 4. (a) Suppose that the probability density function P that an atom emits a gamma wave with the PDF $f(t) = Cte^{-t^2}$ for $t \ge 0$ and f(t) = 0 for t < 0. Find f(t) and calculate the CDF of f(t).

(b) For the above PDF, find the probability that a gamma wave is emitted from -2 seconds to 2 seconds.

5. For given CDF, compute the probability $P(-1 \le X \le 1)$ and find corresponding PDF (or PMF).

(a)
$$F(x) = \begin{cases} 0 & x \le -2 \\ \frac{1}{4}x + \frac{1}{2} & -2 < x < 2 \\ 1 & x \ge 2 \end{cases}$$

(b) (*) $F(x) = A \arctan x + B$ (find A and B.)
(c) (*)

