PMF, PDF, CDF

1. Find a value c such that the given function became PDF. If there's no such c, explain why. Also, find corresponding CDFs and compute $P(0 \le X \le 2)$.

(a)
$$
f(x) = \begin{cases} c & 0 \le x \le 25 \\ 0 & \text{otherwise} \end{cases}
$$

sol. This is a uniform distribution, and $\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{25} cdx = 25c = 1$, so $c = 1/25$. The corresponding CDF is

$$
F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & x \le 0\\ \frac{1}{25}x & 0 < x \le 25\\ 1 & x > 25 \end{cases}
$$

The probability is $P(0 \le X \le 2) = \int_0^2 f(x) dx = F(2) - F(0) = \frac{2}{25}$.

(b)
$$
f(x) = \begin{cases} cx(1-x) & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}
$$

sol. $\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{1} c(x - x^{2})dx = c[\frac{1}{2}]$ $\frac{1}{2}x^2 - \frac{1}{3}$ $\frac{1}{3}x^3\Big|_0^1 = \frac{c}{6} = 1$, so $c = 6$. The corresponding CDF is

$$
F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & x \le 0\\ 3x^2 - 2x^3 & 0 < x \le 1\\ 1 & x > 1 \end{cases}
$$

and $P(0 \le X \le 2) = \int_0^2 f(x)dx = F(2) - F(0) = 1.$ (c) $f(x) = \begin{cases} c(x^2 - 1) & -2 \leq x \leq 2 \end{cases}$ 0 otherwise

sol. If this is a PDF of some continuous random variable, then $\int_{-\infty}^{\infty} f(x)dx = \int_{-2}^{2} c(x^2 1)dx = c\left[\frac{x^3}{3} - x\right]_{-2}^{2} = \frac{4c}{3} = 1$, so $c = \frac{3}{4}$ $\frac{3}{4}$. However, for such c, $f(x)$ is negative when $-1 < x < 1$. Hence $f(x)$ can't be a PDF.

(d)
$$
f(x) = ce^{-|x|}
$$

sol. $\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} ce^{-|x|}dx = 2c \int_{0}^{\infty} e^{-x}dx = 2c = 1$, so $c = \frac{1}{2}$ $\frac{1}{2}$. The corresponding CDF is $F(x) = \int^x$ −∞ $f(t)dt =$ $\left(\frac{1}{2} \right)$ $\frac{1}{2}e^x$ $x < 0$ $1-\frac{1}{2}$ $\frac{1}{2}e^{-x}$ $x \ge 0$ and $P(0 \le X \le 2) = \int_0^2 f(x)dx = F(2) - F(0) = \frac{1}{2} - \frac{1}{2}$ $\frac{1}{2}e^{-2}$.

2. Find CDF of a binomial distribution with $n = 4, p = 1/2$.

sol.

3. (*) Find CDF of a geometric distribution with $p = 1/3$.

sol. (This graph keeps increasing but never touches 1.)

- 4. (a) Suppose that the probability density function P that an atom emits a gamma wave with the PDF $f(t) = Cte^{-t^2}$ for $t \ge 0$ and $f(t) = 0$ for $t < 0$. Find $f(t)$ and calculate the CDF of $f(t)$.
	- sol. Use substitution $u = t^2$, $du = 2tdt$. Then

$$
\int_{-\infty}^{\infty} f(t)dt = \int_{0}^{\infty} Cte^{-t^2}dt = \frac{C}{2} \int_{0}^{\infty} e^{-u}du = \frac{C}{2} [-e^{-u}]_{0}^{\infty} = \frac{C}{2} = 1
$$

so $C = 2$ and $f(t) = 2te^{-t^2}$. CDF is

$$
F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & x \le 0\\ 1 - e^{-x^2} & x > 0 \end{cases}
$$

(b) For the above PDF, find the probability that a gamma wave is emitted from −2 seconds to 2 seconds.

sol.
$$
P(-2 \le X \le 2) = \int_{-2}^{2} f(x) dx = F(2) - F(-2) = 1 - e^{-4}
$$
.

5. For given CDF, compute the probability $P(-1 \leq X \leq 1)$ and find corresponding PDF (or PMF).

(a)
$$
F(x) = \begin{cases} 0 & x \le -2 \\ \frac{1}{4}x + \frac{1}{2} & -2 < x < 2 \\ 1 & x \ge 2 \end{cases}
$$

sol. $P(-1 \le X \le 1) = F(1) - F(-1) = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$ $\frac{1}{2}$. The corresponding PDF is a uniform distribution, given by

$$
f(x) = \begin{cases} \frac{1}{4} & -2 \le x \le 2\\ 0 & \text{otherwise} \end{cases}
$$

(b) $(*)$ $F(x) = A \arctan x + B$ (find A and B.)

sol. First, if $F(x)$ is a CDF, we should have $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$. Since $\lim_{x\to-\infty} \arctan x = -\frac{\pi}{2}$ $\frac{\pi}{2}$ and $\lim_{x\to\infty} \arctan x = \frac{\pi}{2}$ Since $\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}$ and $\lim_{x\to \infty} \arctan x = \frac{\pi}{2}$, we have $-\frac{\pi}{2}A + B = 0$ and $\frac{\pi}{2}A + B = 1$. This implies $B = \frac{1}{2}$ and $A = \frac{1}{\pi}$, so $F(x) = \frac{1}{\pi} \arctan x + \frac{1}{2}$. This gives $rac{1}{2}$ and $A = \frac{1}{\pi}$ $\frac{1}{\pi}$, so $F(x) = \frac{1}{\pi} \arctan x + \frac{1}{2}$ $\frac{1}{2}$. This gives $P(-1 \le X \le 1) = F(1) - F(-1) = \frac{1}{\pi}(\arctan 1 - \arctan(-1)) = \frac{1}{\pi}(\frac{\pi}{4} - (-\frac{\pi}{4}))$ $(\frac{\pi}{4})) = \frac{1}{2}$. The corresponding PDF can be obtained by differentiating $F(x)$, so that

$$
f(x) = F'(x) = \frac{1}{\pi(1+x^2)}.
$$

(c) (*)

Since CDF is a step function (looks like stairs), it is a CDF of a discrete random variable. We should be careful in this case, because $P(-1 \le X \le 1)$ is NOT $F(1) =$ $F(-1) = \frac{2}{5}$. PMF of corresponding random variable is $f(k) = P(X = k) = \frac{1}{5}$ for each $k \in \{-2, -1, 0, 1, 2\}$, so $P(-1 \le X \le 1) = f(-1) + f(0) + f(1) = \frac{3}{5}$.