Partial derivatives & Differential equations

- 1. Compute partial derivatives $f_x, f_y, f_{xx}, f_{xy}, f_{yx}, f_{yy}$ of given functions, and check that $f_{xy} = f_{yx}$ holds.
 - (a) $f(x,y) = e^{xy}$
 - (b) $f(x,y) = \sin(2x+y)$
 - (c) $f(x,y) = x \ln y + y \ln x$
 - (d) $f(x,y) = x^y$
- 2. Let $z = \sin(x^2 + y)$ and $x = e^t, y = \frac{1}{t}$. Compute $\frac{dz}{dt}$.
- 3. (Wave equation) Let v be a fixed constant. The following partial differential equation

$$\frac{1}{v^2}\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$$

is called Wave equation. Prove that $y(x,t) = \sin(x-vt) + \sin(x+vt)$ is a solution of the Wave equation.

Some review

- 1. How many ways can you rearrange the letters in BERKELEY?
- 2. How many ways can we split 9 people into 3 distinguishable teams with 3 people each? What if the teams are indistinguishable?
- 3. What is the probability that a 5-card poker hand contains at least one ace?
- 4. The average number of chocolates sold by Trader's Joe is 150 chocolates per day. What is the probability that exactly 150 chocolates will be sold tomorrow?