1. Compute

$$\iiint_E xydV$$

where *E* lies under the plane z = x + y and above the region in the *xy*-plane bounded by the curves $y = \sqrt{x}$, y = 0, and x = 1.

- 2. Find the volume of the solid that is enclosed by the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 2$.
- 3. Compute

$$\iiint_B x^3 + \sin(yz) + 3dV$$

where B is the unit ball $x^2 + y^2 + z^2 \le 1$.

Solution

1. The region E can be expressed as $E=\{(x,y,z): 0\leq x\leq 1, 0\leq y\leq \sqrt{x}, 0\leq z\leq x+y\}.$ Hence

$$\iiint_{E} xydV = \int_{0}^{1} \int_{0}^{\sqrt{x}} \int_{0}^{x+y} xydzdydx$$

= $\int_{0}^{1} \int_{0}^{\sqrt{x}} xy(x+y)dydx$
= $\int_{0}^{1} \left[\frac{1}{2}x^{2}y^{2} + \frac{1}{3}xy^{3}\right]_{0}^{\sqrt{x}}dx$
= $\int_{0}^{1} \frac{1}{2}x^{3} + \frac{1}{3}x^{\frac{5}{2}}dx = \left[\frac{1}{8}x^{4} + \frac{2}{21}x^{\frac{7}{2}}\right]_{0}^{1} = \frac{37}{168}.$

2. With cylinderical coordinate, we can express the region as $z \ge \sqrt{x^2 + y^2} = r$ and $x^2 + y^2 + z^2 = r^2 + z^2 \le 2$. Then the projection of it to the *xy*-plane is a disk $r \le 1$, since z = r and $r^2 + z^2 = 2$ gives r = z = 1. Hence the volume is

volume =
$$\int_{0}^{2\pi} \int_{0}^{1} \int_{r}^{\sqrt{2-r^{2}}} r dz dr d\theta$$

= $\int_{0}^{2\pi} \int_{0}^{1} r(\sqrt{2-r^{2}}-r) dr$
= $2\pi \cdot \left[-\frac{1}{3}(2-r^{2})^{\frac{3}{2}} - \frac{1}{3}r^{3} \right]_{0}^{1} = \frac{2\pi}{3}(2\sqrt{2}-2)$

3. Use symmetry. The domain of integration B is symmetric. Since the function $(x, y, z) \mapsto x^3$ is an odd function with respec to x (i.e. $(-x)^3 = -x^3$), we have $\iiint x^3 dV = 0$ since the integral on $B \cap \{x > 0\}$ and $B \cap \{x < 0\}$ cancel out. Similarly, the function $(x, y, z) \mapsto \sin(yz)$ is an odd function in y and z and we have $\iiint yz dV = 0$. Hence, the integral equals to $\iiint 3dV$, which is the same as $3 \cdot \text{volume}(B) = 4\pi$.