- 1. Determine whether or not \bf{F} is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.
	- (a) $\mathbf{F}(x, y) = y^2 e^{xy} \mathbf{i} + (1 + xy)e^{xy} \mathbf{j}$
	- (b) $\mathbf{F}(x, y) = \sin(x + y)\mathbf{i} + \cos(x y)\mathbf{j}$
- 2. (a) Let

$$
\mathbf{F}(x,y) = (\cos(xy) - xy\sin(xy))\mathbf{i} + (-x^2\sin(xy))\mathbf{j}.
$$

Find $f(x, y)$ such that $\mathbf{F} = \nabla f$.

(b) Using (a), compute

$$
\int_C (\cos(xy) - xy\sin(xy) + x)dx + (-x^2\sin(xy) + y)dy
$$

where C is an arc from $(-1,0)$ to $(1,0)$, along the unit circle $x^2 + y^2 = 1$. (Hint: decompose the integral into sum of two line integrals.)

Solution

- 1. Let $F(x, y) = P(x, y)i + Q(x, y)j$.
	- (a) We have $P_y = 2ye^{xy} + xy^2e^{xy} = Q_x$ and since P, Q are vector field on whole \mathbb{R}^2 (which is simply connected), it is conservative. Since we have $f_x(x,y) = y^2 e^{xy}$, we have $f(x, y) = ye^{xy} + g(y)$ for some function $g(y)$ on y, and since $f_y(x, y) = (1 +$ $xy)e^{xy} + g'(y) = Q(x, y)$, we can simply take $g = 0$ and get $f(x, y) = ye^{xy}$.
	- (b) Since $P_y = \cos(x + y)$ and $Q_x = -\sin(x y)$, they are difference and **F** is not conservative.
- 2. (a) Since $f_y(x, y) = -x^2 \sin(xy)$, $f(x, y) = x \cos(xy) + g(y)$. Now $f_x(x, y) = \cos(xy)$ $xy \sin(xy) + g'(y)$ so we can take $g = 0$ and $f(x, y) = x \cos(xy)$.
	- (b) Let $G(x, y) = x\mathbf{i} + y\mathbf{j}$. Then then integral is $\int_C (\mathbf{F} + \mathbf{G}) \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot d\mathbf{r} + \int_C \mathbf{G} \cdot d\mathbf{r}$. Since F is conservative with $\mathbf{F} = \nabla f$, we have

$$
\int_C \mathbf{F} \cdot d\mathbf{r} = f(1,0) - f(-1,0) = 2.
$$

Also, we can directly compute $\int_C \mathbf{G} \cdot d\mathbf{r} = \int_C x dx + y dy$. If we choose a parametrization of C as $\mathbf{r}(t) = (-\cos t, \sin t)$ for $0 \le t \le \pi$, we have

$$
\int_C \mathbf{G} \cdot d\mathbf{r} = \int_0^{\pi} (-\cos t, \sin t) \cdot (\sin t, \cos t) dt = 0.
$$

Hence the original line integral equals to $2 + 0 = 2$.

In fact, the vector field $\mathbf{F} + \mathbf{G}$ is also conservative, and $\mathbf{F} + \mathbf{G} = \nabla(x \cos(xy) +$ $(1/2)(x^2 + y^2)$). You can use this to deduce the same result, without decomposing it.