- 1. Let $\mathbf{F}(x, y, z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$. If C is a line segment from $(0, 0, 0)$ to $(1, 1, 1)$, find $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- 2. Let

$$
\mathbf{F}(x,y) = (2xye^{x^2y} + 1)\mathbf{i} + (x^2e^{x^2y} + 1)\mathbf{j}.
$$

- (a) Is **F** conservative? If it is, find $f : \mathbb{R}^2 \to \mathbb{R}$ such that $\nabla f = \mathbf{F}$.
- (b) Let C be a curve parametrized by $\mathbf{r}(t) = (\cos t, \sin t)$ for $0 \le t \le \pi/2$. Find

$$
\int_C (2xy e^{x^2y} + 1 - y) dx + (x^2 e^{x^2y} + 1 + x) dy.
$$

(Hint: express the vector field in the integral as $\mathbf{F}+\mathbf{G}$ for some vector field G.)

Solution

1. The vector field F is conservative with $\nabla f = \mathbf{F}$ for $f(x, y, z) = xy^2z^3$. Such f can be found as follows: once you know that F is conservative (for example, by showing its curl is identically zero and the vector field is defined on whole \mathbb{R}^3), we can set $\nabla f = \mathbf{F}$ and try to find f. From $f_x = y^2 z^3$, we have $f(x, y, z) = xy^2 z^3 + g(y, z)$ for some g, and by comparing f_y and f_z with components of ${\bf F},$ we can find that $g(y,z)$ is a constant function and can take $g = 0$ and $f(x, y, z) = xy^2z^3$. Hence the line integral becomes $f(1, 1, 1) - f(0, 0, 0) = 1$.

It is also possible to compute the line integral directly using the parametrization $r(t)$ = (t, t, t) , which gives the same answer.

- 2. (a) Since $P_y = 2xe^{x^2y} + 2x^3ye^{x^2y} = Q_x$ and defined on $\mathbb R$ (which is simply connected), it is conservative. If we let $\nabla f = \mathbf{F}$, then $f_x(x, y) = 2xye^{x^2y} + 1$ and so $f(x, y) = 1$ $e^{x^2y} + x + g(y)$ for some $g: \mathbb{R} \to \mathbb{R}$. Now $f_y(x, y) = x^2 e^{x^2y} + g'(y) = x^2 e^{x^2y} + 1$, so we have $g'(y) = 1$. We can take $g(y) = y$ and this gives $f(x, y) = e^{x^2y} + x + y$.
	- (b) The line integral equals to $\int_C (\mathbf{F} + \mathbf{G}) \cdot d\mathbf{r}$, where $\mathbf{G}(x, y) = -y\mathbf{i} + x\mathbf{j}$. Then we can decompose it as $\int_C \mathbf{F} \cdot d\mathbf{r} + \int_C \mathbf{G} \cdot d\mathbf{r}$ and compute each integral seperately. From (a), we get $\int_C \mathbf{F} \cdot d\mathbf{r} = f(0, 1) - f(1, 0) = 2 - 2 = 0$. The other line integral can be directly computed as

$$
\int_C -ydx + xdy = \int_0^{\pi/2} (-\sin t, \cos t) \cdot (-\sin t, \cos t)dt = \int_0^{\pi/2} 1dt = \frac{\pi}{2}.
$$

Hence the anwer is $0 + \pi/2 = \pi/2$.