
What is... Multivariable Calculus?

Seewoo Lee

1 What you (may) have learned

If you are a Berkeley student and took Math 1A and 1B course before, then you
may have learned the following stuffs:

• Single-variable functions

• Single-variable limit

• Single-variable differentiation

• Single-variable integration

• Single-variable differential equation

As you noticed, I’m emphasizing single-variable. You have learned about func-
tions defined on the set of real numbers (or subset of it), and their continuity,
differentiation, and integration. Also, there are tons of applications of differen-
tiations and integration of functions in Physics, Engineering, Chemistry, etc.

Limit is basically about the behaviour of a function near a specific point.
We use the notation

lim
x→a

f(x)

for the limit of the function f(x) as x approaches to a. It may or may not exists,
and also could be different from the value f(a). We use epsilon-delta definition
of limit to define the limit rigorously, although we intuitively know what is the
limit is. (Mathematicians like to define something rigorously, even if it looks
trivial for us.) We call that a function f(x) is continuous at x = a if the limit
equals to f(a).

Differentiation measures the change of the function near a specific point. It
is defined as a limit of average rate of change, which is

lim
x→a

=
f(x)− f(a)

x− a
= lim

h→0

f(x + h)− f(x)

h

and this gives the slope of a tangent line of f(x) at x = a. It may or may not
exists (as limit does), and we call that the function f(x) is differentiable at x = a
if the limit exists, and denote it by f ′(a). Intuitively, it means that the function
f(x) can be well-approximated by a tangent line at the point x = a. You may
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have learned formula on differentiations of special functions like polynomials,
rational functions, trigonometric functions, exponential and logarithms, etc.
Also, using the Leibniz rule and the chain rule help us to find differentiation of
complicated functions easily.

• Leibniz rule: (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)

• Chain rule: f(g(x))′ = f ′(g(x))g′(x)

For example, the differentiation of f(x) = x sin(x2) can be computed as

(x sin(x2))′ = (x)′ sin(x2) + x(sin(x2))′ (Leibniz rule)

= sin(x2) + x(sin(x2))′

= sin(x2) + x · cos(x2) · (x2)′ (Chain rule, sin(x)′ = cos(x))

= sin(x2) + x · cos(x2) · 2x
= sin(x2) + 2x2 cos(x2)

Also, there’s a theorem that if a function f(x) has a local maximum or minimum
at x = a, and it is differentiable at x = a, then f ′(a) = 0. This let us to find
the candidates of points that f(x) attains a (local) maximum or minimum. To
determine if the point is actually (local) maximum or minimum, observing the
sign of the second order derivative f ′′(a) would be helpful.

Integration is about finding an area under a graph of a certain function. We
use the following notation ∫ b

a

f(x)dx

for the area under the graph of the function f(x) with 0 ≤ x ≤ b. For example,
the area under the function f(x) = x with 0 ≤ x ≤ 2 is a right triangle with
both base and height has lenght 2, so that the area would be 1

2 × 2 × 2 = 2.
However, you may need to find the area under more complicated functions (like
polynomials, trigonometric functions, ...), and we need a new approach for these.
The idea of integration is to divide the region under the function into rectan-
gles with tiny widths, and approximate the area as a sum of the area of these
rectangles, and take a limit of width → 0 to get the area we want. The most
important theorem is the Fundamental Theorem of Calculus, which relates the
(definite) integration with antiderivatives (indefinite integraion). In summary,
if you know the antiderivative F (x) of a function f(x), i.e. the function F (x)
with F ′(x) = f(x) on a ≤ x ≤ b, then the integration will be∫ b

a

f(x)dx = F (b)− F (a).

Also, there are several techniques like Integration by Parts and Change of Vari-
ables to compute integrals more easily. (These techniques essentially corre-
sponds to the Leibniz rule and chain rule for differentiation.) In general, it is
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much easier to find the derivative of a function than integration (some of the
functions like 1/ log(x) even don’t have antiderivatives of closed form.)

At last, you learned about differential equations, which are equations on
functions that consist of derivatives of them. For example, it may asks you
to find a function y = f(x) that satisfies y′′ + y = 0. It is not hard to check
that the functions of the form A sin(x) +B cos(x) for any constants A,B satisfy
the equation. However, it is hard in general to find the solution(s) of given
differential equation. Some of (actually, most of) the differential equations have
no closed-form solutions, and we need a computer to find the approximations
of them numerically.

2 What you are going to learn

What you are going to learn in Math 53 will be the multivariable version of the
above topics that you have learned from Math 1A and Math 1B. So basically,
you are going to learn about

• Parametric equations and curves

• Vectors and vector functions

• Multivariable functions

• Multivariable limit

• Multivariable differentiation

• Multivariable integration

• Green’s Theorem, Stokes’ Theorem, Divervence Theorem

• Multivariable differential equation

The most important topic in multivariable calculus is about limit, differ-
entiation, and integration of multivariable functions, which are functions on
several variables. (We will only going to study functions on 2 or 3 variables in
this course.) For example, f(x, y) = x2 + 3xy is a function on two variables
x and y. In case of limit, the situation becomes much harder than the limt
of single-variable functions. For the single-variable case, there are essentially
(at most) two directions that the input x can approach to a point a: from the
above (x > a) and below (x < a). However, for the multi-variable functions,
there are infinitely many ways to approach a given point (a, b) (see below). Like
single-variable case, the rigorous definition uses epsilon-delta.

Let’s consider a two-variable function f(x, y). If we fix y as y = b then we can
regard it as a single-variable function x 7→ f(x, b), and we can say differentiation
of it. We call it as a partial derivative of f with respect to x at (a, b), which is
just

lim
h→0

f(a + h, b)− f(a, b)

h
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Figure 1: Limit of a s1ingle-variable function (left) and a 2-variable function
(right).

and we denote it as fx(a, b) (if exists). As you expect, we denote the partial
derivative with respect to y as fy(a, b), and we can differentiate more and get
things like fxx, fxy, fxyyx, ... if you want (and if you can). Also, it is even possible
to define directional derivative of a function in the direction of any given (unit)
vector u = 〈a, b〉 at a point (x0, y0), which is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
.

You can check that the directional derivatives in the direction of 〈1, 0〉 and 〈0, 1〉
are just fx and fy. Also the directional derivative Duf(x, y) can be expressed
as an inner product

Duf(x, y) = 〈fx(x, y), fy(x, y)〉 · u = ∇f · u

where ∇f = 〈fx(x, y), fy(x, y)〉 is a special and important vector function called
the gradient of f . It gives the direction of fastest increase of f .

Finding (local) maximum and minimum values of multivariable functions
also uses differentiation. Like a single-variable case, the partial derivatives fx
and fy should be zero at the local maximum and minimum. (We call such a
point as a critical point.) To determine if the function attins local maximum
or minimum (or neither), there’s also a second derivative test for multi-variable
functions. Also, it is possible to find maxiumum or minimum of a multivariable
function f(x, y), subject to a constraint by another multivariable function as
g(x, y) = k, using Langrange Multiplier.

Integration of multi-variable function is to find the volume of an area under
a graph of a multi-variable function. For example, we may want to find a
volume of an area under the graph of function f(x, y) = x2 + 3xy over a region
D = {(x, y)|x2 + y2 ≤ 1} enclosed by a circle. We call it as the double integral
of f over D, and denote by ∫∫

D

f(x, y)dA.
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You will learn various techniques and theorems to compute double integrals,
such as Fubini’s theorem and change of variables. Sometimes it is easier to
compute double integrals using polar coordinates instead of the rectangular co-
ordinates. Also, it is possible to express the surface area of a graph of a function
as a certain double integral, and compute it, which is very similar to the arc
length formula for single-variable functions.

We can do similar things for 3-variable functions (actually for many-variable
functions, but we are not going to deal with it in this course). We can define
triple integral of a function f(x, y, z) over some region, and use it to compute
volume or mass enclosed by a level set of a function. (As you expected, we use
three integral symbols for triple integral.)

The most important part of multivariable calculus is Green’s theorem, Stokes’
theorem, and Divergence theorem. Firstly, we define line integral of a function
or vector field over a curve as an integral of the function / vector field along
a curve. Green’s theorem relates a line integral around a plane curve C and a
double integral over the plane region D bounded by C. Hence we can translate
difficult line integrals into more simple double integrals, or vice versa. Stokes’
theorem is a 3-dimensional version of the Green’s theorem, which relates line
integral of a 3-dimensional vector field F over a curve C with a surface inte-
gral of another vector field called curl of F, denoted as curlF, over a surface
S whose boundary is C. At last, the divergence theorem gives an equality be-
tween a surface integral over a boundary surface S of a region E and the triple
integral of the divergence of F, divF, over E. The following figure (Figure 2)
gives intuitions for curl and divergence, along with the conceptual proof of these
theorems.1

Differential equations for multivariable functions are often called Partial Dif-
ferential Equations, and we are not going to learn deeply on the topic. As in
the case of single-variable, it is easy to check that a given function satisfies a
certain partial differential equation, while finding solutions of a given equation
is extremely hard in general. For example, Navier-Stokes equations are certain
class of partial differential equations that describe the motion of fluid, and it is
one of the seven millenial problems in mathematics.

1If you have a chance to learn differential geometry, then the functions like gradient,
curl, and divergence can be generalized into higher dimensional objects (more than 3) called
differential forms. In this sense, the three theorems mentioned above are just specific cases
of a single theorem from Stokes.
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Figure 2: Intuitive explanations for Green’s theorem, Stokes’ theorem, and
Divergence theorem. curlF can be thought as local rotation of F at a point,
and divF can be thought as local divergence of F.
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