1. Solve for *x*.

(a)
$$\log_2(x) = 5$$

(b) $e^{x-1} = 3$
(c) $\log_2(x^2 - 1) = 3$
(d) $2^{2^x} = 256$

2. Let $f(x) = 6 \log_2(x-1) - 3$.

- (a) Find the domain and the range of f(x).
- (b) Find all zeros of f(x) = 0.
- (c) What is the inverse function of f(x)?

3. Write the first five terms of the sequence defined by $a_n = n^2 + 1$.

4. Consider the recursive sequence $a_1 = 1$ and $a_{n+1} = 2a_n + 1$. Write down the first five terms of this sequence. Can you guess the general formula for a_n ?

- 1. Solve for *x*.
 - (a) $\log_2(x) = 5$ (b) $e^{x-1} = 3$ (c) $\log_2(x^2 - 1) = 3$ (d) $2^{2^x} = 256$
 - (a) $x = 2^5 = 32$ (b) $x - 1 = \ln 3, x = \ln 3 + 1$ (c) $x^2 - 1 = 2^3 = 8, x = \pm 3$ (d) $2^x = \log_2 256 = 8, x = \log_2 8 = 3$
- 2. Let $f(x) = 6 \log_2(x 1) 3$.
 - (a) Find the domain and the range of f(x).
 - (b) Find all zeros of f(x) = 0.
 - (c) What is the inverse function of f(x)?
 - (a) Domain: x > 1, Range: \mathbb{R}

(b)
$$6 \log_2(x-1) - 3 = 0 \Leftrightarrow \log_2(x-1) = \frac{1}{2} \Leftrightarrow x - 1 = 2^{1/2} = \sqrt{2} \Leftrightarrow x = 1 + \sqrt{2}$$

- (c) $x = 6\log_2(y-1) 3 \Leftrightarrow \log_2(y-1) = \frac{x+3}{6} \Leftrightarrow y-1 = 2^{(x+3)/6} \Leftrightarrow y = 1 + 2^{(x+3)/6} = f^{-1}(x)$
- 3. Write the first five terms of the sequence defined by $a_n = n^2 + 1$.

2, 5, 10, 17, 26

4. Consider the recursive sequence $a_1 = 1$ and $a_{n+1} = 2a_n + 1$. Write down the first five terms of this sequence. Can you guess the general formula for a_n ?

The first terms are 1, 3, 7, 15, 31. You *may* guess that (you can compute more terms if you want) $a_n = 2^n - 1$. Try to prove this yourself, by defining a new sequence $b_n = a_n + 1$ (what is the recursion formula that b_n satisfies?).