1. Determine whether the following sequences converge or diverge. If it converges, find the limit.

(a)
$$a_n = \frac{2n^2 + 1}{n^2 + n + 1}$$

(b) $a_n = \frac{n^4}{10n^3 + 100n^2 + 1}$
(c) $a_n = \frac{2^n + 3^n}{5^n}$
(d) $a_n = n^3$
(e) $a_n = \cos(n\pi/2)$

- 2. Determine whether the following limits exist or not. If it converges, find the limit.
 - (a) $\lim_{x\to\infty} \frac{x^2+3}{3x^2-4}$ (b) $\lim_{x\to\infty} \sqrt{9x^2+x} - 3x$ (c) $\lim_{x\to\infty} \ln(x^4+x) - \ln(x^4)$ (d) $\lim_{x\to1} x/(x-1)$ (e) $\lim_{x\to1} (x^2-1)/(x-1)$ (f) $\lim_{x\to3} (\sqrt{x+6}-x)/(x^3-3x^2)$ (g) $\lim_{x\to0} \sin(2x)/x$ (h) $\lim_{x\to\pi/4} \sin(2x)/x$ (i) $\lim_{x\to\infty} \sin(2x)/x$
- 3. Give an example of a function f(x) where

$$f(1), \lim_{x \to 1^{-}} f(x), \lim_{x \to 1^{+}} f(x)$$

all exists and finite but all different. Is f(x) continuous?

4. (*) Consider the recursive sequence $a_1 = 1$ and $a_{n+1} = \frac{1}{2}(a_n + \frac{3}{a_n})$. Compute the first few terms using calculators. Can you guess the limit? (Hint: compute a_n^2 .) Show that your guess is correct assuming that the limit exists.

- 1. Determine whether the following sequences converge or diverge. If it converges, find the limit.
 - (a) $a_n = \frac{2n^2 + 1}{n^2 + n + 1}$ (b) $a_n = \frac{n^4}{10n^3 + 100n^2 + 1}$ (c) $a_n = \frac{2^n + 3^n}{5^n}$ (d) $a_n = n^3$ (e) $a_n = \cos(n\pi/2)$
 - (a) Converges to 2
 - (b) Diverges to ∞
 - (c) Converges to 0
 - (d) Diverges to ∞
 - (e) The sequence is periodic: 0, -1, 0, 1, 0, -1, 0, 1, ..., so the limit does not exist.
- 2. Determine whether the following limits exist or not. If it converges, find the limit.
 - (a) $\lim_{x \to \infty} \frac{x^2 + 3}{3x^2 4}$
 - (b) $\lim_{x\to\infty}\sqrt{9x^2+x}-3x$
 - (c) $\lim_{x\to\infty} \ln(x^4 + x) \ln(x^4)$
 - (d) $\lim_{x \to 1} x/(x-1)$
 - (e) $\lim_{x\to 1} (x^2 1)/(x 1)$
 - (f) $\lim_{x\to 3}(\sqrt{x+6}-x)/(x^3-3x^2)$
 - (g) $\lim_{x\to 0} \sin(2x)/x$
 - (h) $\lim_{x\to\pi/4} \sin(2x)/x$
 - (i) $\lim_{x\to\infty} \sin(2x)/x$
 - (a) Converges to 1/3
 - (b) Converges to 1/6
 - (c) $\ln(x^4 + x) \ln(x^4) = \ln((x^4 + x)/x^4)$, converges to $\ln(1) = 0$
 - (d) Limit does not exist.
 - (e) $\lim_{x \to 1} x + 1 = 2$.

(f)

$$\frac{\sqrt{x+6}-x}{x^3-3x^2} = \frac{\sqrt{x+6}-x}{x^2(x-3)} = \frac{x+6-x^2}{x^2(x-3)}\frac{1}{\sqrt{x+6}+x} = -\frac{x+2}{x^2(\sqrt{x+6}+x)}$$

and this converges to -5/54 as $x \rightarrow 3$.

- (g) $\lim_{x\to 0} 2 \cdot \sin(2x)/(2x) = 2$
- (h) $\sin(2\pi/4)/(\pi/4) = 4/\pi$
- (i) We have $-1/x \le |\sin(2x)/x| \le 1/x$ for x > 0, hence by the squeeze theorem we get $\lim_{x\to\infty} \frac{\sin(2x)}{x} = 0$.
- 3. Give an example of a function f(x) where

$$f(1), \quad \lim_{x \to 1^{-}} f(x), \quad \lim_{x \to 1^{+}} f(x)$$

all exists and finite but all different. Is f(x) continuous?

Define f(x) as

$$f(x) = \begin{cases} 1 & x > 1 \\ 0 & x = 1 \\ -1 & x < 1 \end{cases}$$

Then

$$f(1) = 0$$
, $\lim_{x \to 1^{-}} f(x) = -1$, $\lim_{x \to 1^{+}} f(x) = 1$

and all of them are different. The function can't be continuous since the limits as $x \rightarrow 1$ and f(1) are different (the limit even does not exist!)

4. (*) Consider the recursive sequence $a_1 = 1$ and $a_{n+1} = \frac{1}{2}(a_n + \frac{3}{a_n})$. Compute the first few terms using calculators. Can you guess the limit? (Hint: compute a_n^2 .) Show that your guess is correct assuming that the limit exists.

First few terms are

$$1, 2, \frac{7}{4}, \frac{97}{56}, \dots$$

and their squares are

which seems to converge to 3. This is the correct guess: if the limit is α , then it should satisfy

$$\alpha = \frac{1}{2} \left(\alpha + \frac{3}{\alpha} \right) \Leftrightarrow \alpha^2 = 3$$

and since $a_n > 0$ for all n, the only possible choice is $\alpha = \sqrt{3}$. This recursion comes from Newton–Raphson method and can be used to approximate square roots efficiently (once you replace 3 with another number, you get the square root of that number as a limit).