- 1. Can you use L'Hôpital's Rule to compute the following limits? Compute the limit.
	- (a) $\lim_{x\to 0} \frac{e^x 1}{x^2 + x}$ x^2+x (b) $\lim_{x\to 0} \frac{2\sin(x) - \sin(2x)}{x - \sin(x)}$ $x-\sin(x)$ (c) $\lim_{x \to 0^+} \frac{\cos(x)}{2x}$ $2x$ (d) $\lim_{x\to 0^+} \frac{\sin(x)}{x^2}$ x^2 (e) $\lim_{x\to\infty} \frac{x^2}{e^x}$ e^x (f) $\lim_{x\to 0^+} x \ln(x)$
	- (g) $\lim_{x\to\infty} \frac{e^x + e^{-x}}{e^x e^{-x}}$ e^x-e^{-x}

2. Assume that $\lim_{x\to\infty} f(x) + f'(x)$ converges and $\lim_{x\to\infty} e^x f(x) = \infty$. Show that $\lim_{x\to\infty} f'(x) = 0.$ *Hint*: Look at $\frac{e^{x}f(x)}{e^{x}}$ $\frac{e^{x}}{e^{x}}$.

3. Due to a shortage in electric equipment required for building wind turbines, their cost $\frac{n^2}{32,000}$ in million dollars is not linear in the number *n* of wind turbines built. However every coal power plant costs 100 million dollars. Assume that a wind turbine produces 5 million kWh per year and a coal power plant a billion kWh. How many wind turbines and coal power plants should be built to satisfy a yearly electrity demand of 100,000 kWh at the lowest possible cost?

4. Find antiderivatives of the following functions.

(a)
$$
f(x) = \frac{e^{2x} + 1}{e^x}
$$

\n(b) $g(x) = \frac{e^x}{e^{2x} + 1}$
\n(c) $h(x) = \sqrt{x} \left(3\frac{\sqrt{x}}{x} - 5x^2 \right)$
\n(d) $i(x) = \sin(4x)$

- 1. Can you use L'Hôpital's Rule to compute the following limits? Compute the limit.
	- (a) $\lim_{x\to 0} \frac{e^x 1}{x^2 + x}$ x^2+x
	- (b) $\lim_{x\to 0} \frac{2\sin(x) \sin(2x)}{x \sin(x)}$ $x-\sin(x)$
	- (c) $\lim_{x \to 0^+} \frac{\cos(x)}{2x}$ $2x$
	- (d) $\lim_{x\to 0^+} \frac{\sin(x)}{x^2}$ x^2
	- (e) $\lim_{x\to\infty} \frac{x^2}{e^x}$ e^x
	- (f) $\lim_{x\to 0^+} x \ln(x)$
	- (g) $\lim_{x\to\infty} \frac{e^x + e^{-x}}{e^x e^{-x}}$ e^x-e^{-x}
	- (a) $\lim_{x\to 0} \frac{e^x 1}{x^2 + x}$ $\frac{e^x-1}{x^2+x} = \lim_{x\to 0} \frac{e^x}{2x+1} = \frac{e^0}{2 \cdot 0+1} = 1$
	- (b) Since $\lim_{x\to 0} 2\sin(x) \sin(2x) = 2\sin(0) \sin(2 \cdot 0) = 0$ and $\lim_{x\to 0} 1$ $cos(x) = 1 - cos(0) = 0$, L'Hôpital's Rule applies. Thus $lim_{x\to 0} \frac{2 sin(x) - sin(2x)}{x - sin(x)} =$ lim_{x→0} $\frac{2\cos(x)-2\cos(2x)}{1-\cos(x)}$. We can apply L'Hôpital's Rule another two times to obtain $\lim_{x\to 0} \frac{2\cos(x)-2\cos(2x)}{1-\cos(x)} = \lim_{x\to 0} \frac{-2\sin(x)+4\sin(2x)}{\sin(x)} = \lim_{x\to 0} \frac{-2\cos(x)+8\cos(2x)}{\cos(x)} =$ $\frac{-2\cos(0)+8\cos(2\cdot0)}{\cos(0)} = \frac{-2+8}{1}$ $\frac{2+6}{1} = 6.$
	- (c) Note that $\frac{1}{4x} \le \frac{\cos(x)}{2x} \le \frac{1}{2x}$ for all $x \in (0, \frac{\pi}{3})$ and $\lim_{x \to 0^+} \frac{1}{4x} = \infty = \lim_{x \to 0^+} \frac{1}{2x}$. Thus $\lim_{x\to 0^+} \frac{\cos(x)}{2x} = \infty$ by the Squeeze Theorem.
	- (d) Since $\lim_{x\to 0^+} \sin(x) = \sin(0) = 0$ and $\lim_{x\to 0^+} x^2 = 0^2 = 0$, L'Hôpital's Rule applies. Thus $\lim_{x\to 0^+} \frac{\sin(x)}{x^2}$ $\frac{\ln(x)}{x^2} = \lim_{x \to 0^+} \frac{\cos(x)}{2x} = \infty.$
	- (e) We apply L'Hôpital's Rule twice to obtain $\lim_{x\to\infty} \frac{x^2}{e^x}$ $\frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x}$ $\frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x}$ $\frac{2}{e^x}$ = 0.
	- (f) Since $\lim_{x\to 0^+} \ln(x) = -\infty$ and $\lim_{x\to 0^+} x^{-1} = \infty$, L'Hôpital's Rule applies to the fraction $\frac{\ln(x)}{x^{-1}}$. Thus $\lim_{x\to 0^+} x \ln(x) = \lim_{x\to 0^+} \frac{\ln(x)}{x^{-1}}$ $\frac{n(x)}{x^{-1}} = \lim_{x \to 0^+} \frac{x^{-1}}{-x^{-2}} =$ $\lim_{x\to 0^+} -x = 0$
	- (g) We have $\lim_{x\to\infty} \frac{e^x + e^{-x}}{e^x e^{-x}}$ $\frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to \infty} \frac{e^x}{e^x}$ $\frac{e^x}{e^x} \frac{e^x + e^{-x}}{e^x - e^{-x}}$ $\frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to \infty} \frac{e^{2x} + 1}{e^{2x} - 1}$ $\frac{e^{2x}+1}{e^{2x}-1} = \lim_{x\to\infty} \frac{2e^{2x}}{2e^{2x}} = 1$ where the third equality uses L'Hôpital's Rule.

2. Assume that $\lim_{x\to\infty} f(x) + f'(x)$ converges and $\lim_{x\to\infty} e^x f(x) = \infty$. Show that $\lim_{x\to\infty} f'(x) = 0.$ *Hint*: Look at $\frac{e^{x}f(x)}{e^{x}}$ $\frac{e^{x}}{e^{x}}$.

We have $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{e^x f(x)}{e^x}$ $\frac{f(x)}{e^x} = \lim_{x \to \infty} \frac{e^x f(x) + e^x f'(x)}{e^x}$ $\frac{e^{x}e^{x}}{e^{x}}$ = $\lim_{x\to\infty} f(x) + f'(x)$ where the second equality uses L'Hôpital's Rule. Thus

$$
\lim_{x \to \infty} f'(x) = \left(\lim_{x \to \infty} f(x) + f'(x)\right) - \left(\lim_{x \to \infty} f(x)\right)
$$

$$
= \left(\lim_{x \to \infty} f(x) + f'(x)\right) - \left(\lim_{x \to \infty} f(x) + f'(x)\right)
$$

$$
= 0.
$$

3. Due to a shortage in electric equipment required for building wind turbines, their cost $\frac{n^2}{32,000}$ in million dollars is not linear in the number *n* of wind turbines built. However every coal power plant costs 100 million dollars. Assume that a wind turbine produces 5 million kWh per year and a coal power plant a billion kWh. How many wind turbines and coal power plants should be built to satisfy a yearly electrity demand of 100,000 kWh at the lowest possible cost?

If we build *n* wind turbines then we need to build $m = \frac{100,000-5n}{1,000}$ coal power plants. The total cost would be $c(n) = \frac{n^2}{32,000} + 100m = \frac{n^2}{32,000} + \frac{100,000-5n}{10}$ million dollars. Since $c'(n) = \frac{n}{16,000} - \frac{1}{2}$ $\frac{1}{2}$ has a root at $n = \frac{16,000}{2}$ $\frac{1}{2^{2}}$ = 8,000 and $c''(8,000) = \frac{1}{16,000} > 0$, the function c takes its minimum at 8,000 by the second derivative test. Thus we should build 8,000 wind turbines and $\frac{100,000-5.8,000}{1,000} = 100 - 40 = 60$ coal power plants.

4. Find antiderivatives of the following functions.

(a)
$$
f(x) = \frac{e^{2x} + 1}{e^x}
$$

\n(b) $g(x) = \frac{e^x}{e^{2x} + 1}$
\n(c) $h(x) = \sqrt{x} \left(3\frac{\sqrt{x}}{x} - 5x^2\right)$
\n(d) $i(x) = \sin(4x)$
\n(a) $F(x) = e^x - e^{-x}$
\n(b) $G(x) = \tan^{-1}(e^x)$
\n(c) $H(x) = 3x - 2x^{\frac{7}{2}}$

(d)
$$
I(x) = -\frac{1}{4}\cos(4x)
$$