- 1. Find the most general antiderivative of the function.
 - (a) $f(x) = x^3 + x^2 + x + 1$ (b) $f(x) = e^x - \frac{1}{x^2}$ (c) $f(x) = \sqrt{3x + 4}$ (d) $f(x) = \sec^2(2x) - 2\sin x + 3\cos x$ (e) $f(x) = 2x\cos(x^2) - \frac{2x}{x^2 + 1}$ (f) $f(\textcircled{C}) = \ln \textcircled{C}$ (Hint: what is $(\textcircled{C}) \ln \textcircled{C})'$?)

2. Let $\widehat{\square}(x)$ be a function satisfying

$$\underline{\cap}''(x) = \sqrt{x+1}, \quad \underline{\cap}'(0) = \underline{\cap}(0) = 1.$$

Find $\bigcap(x)$.

3. What is the maximum area of a rectangle inscribed in a circle of radius 1?

- 1. Find the most general antiderivative of the function.
 - (a) $f(x) = x^3 + x^2 + x + 1$ (b) $f(x) = e^x - \frac{1}{x^2}$ (c) $f(x) = \sqrt{3x + 4}$ (d) $f(x) = \sec^2(2x) - 2\sin x + 3\cos x$ (e) $f(x) = 2x\cos(x^2) - \frac{2x}{x^2 + 1}$ (f) $f(\textcircled{c}) = \ln \textcircled{c}$ (Hint: what is $(\textcircled{c}) \ln \textcircled{c})'?$)

All C's below are constants.

- (a) $F(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 + \frac{1}{2}x^2 + x + C$
- (b) $F(x) = e^x + \frac{1}{x} + C$

(c)
$$F(x) = \frac{1}{3} \frac{2}{3} (3x+4)^{3/2} + C = \frac{2}{9} (3x+4)^{3/2} + C$$

- (d) Recall $\tan(x)' = \sec^2(x)$. $F(x) = \frac{1}{2}\tan(2x) + 2\cos x + 3\sin x + C$.
- (e) Observe that $\sin(g(x))' = g'(x) \cos(g(x))$ and $\ln(h(x))' = h'(x)/h(x)$. You can try to match up with f(x) and find $\sin(x^2)' = 2x \cos(x^2)$ and $\ln(x^2 + 1)' = 2x/(x^2 + 1)$, so the antiderivative becomes $F(x) = \sin(x^2) \ln(x^2 + 1) + C$. Note that you don't need absolute value on ln because $x^2 + 1$ is always positive.
- (f) We have $(\textcircled{B} \ln \textcircled{B})' = \ln \textcircled{B} + 1$, so $(\textcircled{B} \ln \textcircled{B} \textcircled{B})' = \ln \textcircled{B}$ and antriderivative is $F(\textcircled{B}) = \textcircled{B} \ln \textcircled{B} \textcircled{B} + C$.
- 2. Let $\widehat{\square}(x)$ be a function satisfying

$$\underline{\bigcap}''(x) = \sqrt{x+1}, \quad \underline{\bigcap}'(0) = \underline{\bigcap}(0) = 1.$$

Find $\mathcal{H}(x)$.

From $\mathfrak{A}''(x) = (\mathfrak{A}'(x))' = \sqrt{x+1}$, we have $\mathfrak{A}'(x) = \frac{2}{3}(x+1)^{3/2} + C_1$, and $1 = \mathfrak{A}'(0) = \frac{2}{3} + C_1$ gives $C_1 = \frac{1}{3}$, $\mathfrak{A}'(x) = \frac{2}{3}(x+1)^{3/2} + \frac{1}{3}$. Then we have $\mathfrak{A}(x) = \frac{2}{5}\frac{2}{3}(x+1)^{5/2} + \frac{1}{3}x + C_2 = \frac{4}{15}(x+1)^{5/2} + \frac{1}{3}x + C_2$ and $1 = \mathfrak{A}(0) = \frac{4}{15} + C_2$ gives $C_2 = \frac{11}{15}$. So the function is

$$\mathfrak{L}(x) = \frac{4}{15}(x+1)^{5/2} + \frac{1}{3}x + \frac{11}{15}.$$

Math 10A

3. What is the maximum area of a rectangle inscribed in a circle of radius 1?

Let *a*, *b* be the lengths of the sides of the rectangle. Then the length of the diagonal is $\sqrt{a^2 + b^2}$, and this equals 2 by the assumption. Since the area is S = ab, our goal is to maximize *ab* under $\sqrt{a^2 + b^2} = 2$. We can express *b* in terms of *a* as $b = \sqrt{4 - a^2}$, and can view $S = ab = a\sqrt{4 - a^2}$ as a function in *a*, where the domain of *S*(*a*) is 0 < a < 2. We have $S'(a) = \sqrt{4 - a^2} + a_2^1 \frac{-2a}{\sqrt{4 - a^2}} = \frac{4 - 2a^2}{\sqrt{4 - a^2}}$, and the critical number of *S*(*a*) is $S'(a) = \frac{4 - 2a^2}{\sqrt{4 - a^2}} = 0 \Leftrightarrow a = \sqrt{2}$ (note that *a* cannot be $-\sqrt{2}$ since length should be positive). One can check that *S*(*a*) increases (resp. decreases) for $0 < a < \sqrt{2}$ (resp. $\sqrt{2} < 2$, hence *S* attains its absolute maximum (not only local maximum) at $a = \sqrt{2}$, which is $S(\sqrt{2}) = 2$. So the maximum area is 2 that is attained by the square of length $\sqrt{2}$.