- 1. Evaluate following integrals.
 - (a) $\int_0^1 x dx$
 - (b) $\int_0^1 x^3 dx$
 - (c) $\int_0^1 e^{2x} dx$
 - (d) $\int_0^{\pi/4} \sin(x) dx$
 - (e) $\int_0^1 \frac{e^x}{e^x + 1} dx$
 - (f) $\int_{-1}^{1} \arctan(x) dx$ (Hint: $\arctan(x)$ is an o...)

2. Assume that a differentiable function $f: \mathbb{R} \to \mathbb{R}$ satisfies f(0) = 0, f(1) = 1 and f(2) = 2. Evaluate the following integrals:

(a)

$$\int_{1}^{2} f'(x) dx.$$

(b)

$$\int_0^1 f'(x)e^{f(x)}dx.$$

(c)

$$\int_0^{\ln 2} e^x f'(e^x) dx.$$

3. Let

$$F(x) = \int_0^{e^x} \sqrt{1 + u^2} du.$$

Find F'(0).

(\star) Can you also find F(0)?

- 1. Evaluate following integrals.
 - (a) $\int_0^1 x dx$
 - (b) $\int_0^1 x^3 dx$
 - (c) $\int_0^1 e^{2x} dx$
 - (d) $\int_0^{\pi/4} \sin(x) dx$
 - (e) $\int_0^1 \frac{e^x}{e^x + 1} dx$
 - (f) $\int_{-1}^{1} \arctan(x) dx$ (Hint: $\arctan(x)$ is an o...)
 - (a) $\left[\frac{1}{2}x^2\right]_0^1 = \frac{1}{2}$
 - (b) $\left[\frac{1}{4}x^4\right]_0^1 = \frac{1}{4}$
 - (c) $\left[\frac{1}{2}e^{2x}\right]_0^1 = \frac{1}{2}(e^2 1)$
 - (d) $\left[-\cos x\right]_0^{\pi/4} = 1 \frac{1}{\sqrt{2}}$
 - (e) Use substitution $u = e^x$ (or you can directly integrate if you can see the antiderivative). $\int_1^e \frac{1}{u+1} du = [\ln(u+1)]_1^e = \ln(e+1) \ln(2)$
 - (f) $f(x) = \arctan(x)$ is an odd function, so the integral over the symmetric domain [-1,1] is 0. But actually, it is possible to find antiderivative using integration by parts

$$\int \arctan(x)dx = x\arctan(x) - \int x\frac{1}{1+x^2}dx = x\arctan(x) - \frac{1}{2}\ln(1+x^2).$$

- 2. Assume that a differentiable function $f: \mathbb{R} \to \mathbb{R}$ satisfies f(0) = 0, f(1) = 1 and f(2) = 2. Evaluate the following integrals:
 - (a)

$$\int_{1}^{2} f'(x) dx.$$

(b)

$$\int_0^1 f'(x)e^{f(x)}dx.$$

(c)

$$\int_0^{\ln 2} e^x f'(e^x) dx.$$

(a) By the fundamental theorem of calculus, it is f(2) - f(1) = 1.

- (b) Use substitution u = f(x) gives $\int_{f(0)}^{f(1)} e^u du = e 1$.
- (c) Use substitution $u = e^x$ gives $\int_1^2 f'(u) du = f(2) f(1) = 1$.

3. Let

$$F(x) = \int_0^{e^x} \sqrt{1 + u^2} du.$$

Find F'(0).

(\star) Can you also find F(0)?

You can view F(x) as a composition of e^x and $G(x) = \int_0^x \sqrt{1 + u^2} du$, $F(x) = G(e^x)$. By the chain rule and the fundamental theorem of calculus, we get $F'(x) = G'(e^x)e^x = \sqrt{1 + e^{2x}}e^x$ and $F'(0) = \sqrt{2}$.

Computing $F(0) = \int_0^1 \sqrt{1 + u^2} du$ is actually not easy - let me know if you find it (without cheating) then I may buy you coffee.