More Jordan forms

Seewoo Lee

1. Let $T \in \mathcal{L}(\mathbb{C}^3)$ be a matrix given by

$$\begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

where *a* is 0 or 1. Fill the blanks in the table below.

а	min. poly.	char. poly.	$\dim E(1,T)$	$\dim G(1,T)$	$\dim E(2,T)$	$\dim G(2,T)$
0						
1						

2. Here's a Jordan form of some $T \in \mathcal{L}(\mathbb{C}^{10})$:

1	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	0	0	2	1	0	0	0	0
0	0	0	0	0	2	1	0	0	0
0	0	0	0	0	0	2	0	0	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

(a) What are the eigenvalues?

(b) What is the characteristic polynomial?

(c) What is the minimal polynomial?

(d) Find dimension of $E(\lambda, T)$ for each eigenvalue λ .

(e) Find dimension of $G(\lambda, T)$ for each eigenvalue λ .

- 3. Let $T \in \mathcal{L}(\mathbb{C}^4)$. Assume that *T* has two eigenvalues -2, 1.
 - (a) Find all the possible pairs of (minimal polynomial, characteristic polynomial). How many are there?
 - (b) Which pair gives diagonalizable *T*?
 - (c) Find Jordan form for each pairs. Check that there's only one possible Jordan forms (up to permuting Jordan blocks) for each pair.
- 4. Find two different 5 by 5 Jordan forms with same characteristic polynomial and minimal polynomial. Here we say that two Jordan forms are indifferent if they are the same up to permutation of Jordan blocks.
- 5. Find a 6 by 6 Jordan form *T* where
 - it has two distinct eigenvalues 2, 3,
 - its minimal polynomial has degree 4,
 - its characteristic polynomial is $(z-2)^3(z-3)^3$,
 - two eigenspaces E(2, T) and E(3, T) have different dimensions,
 - $(T 2I)^k$ becomes a (genuine) diagonal matrix for some k > 0.