Week 1, August 30

Seewoo Lee

- 1. (a) Read and digest the proof of the Theorem 1.27 in the book again. Which axioms are used? Which are *not* used?
 - (b) Now, do the exercise 1A 5 and 6, if you haven't done yet. Then read the proof of 1.27 again. Did you find something interesting/satisfying?
 - (c) (*) You may learn several "algebraic structures" in a future (at least if you take Math 113). Here is the first concept you will learn:

A set *G* with a binary operation $* : G \times G \rightarrow G$ is called a *group* if it satisfies three axioms:

- i. (associativity) (a * b) * c = a * (b * c) for any $a, b, c \in G$.
- ii. (identity) There is $e \in G$ such that a * e = e * a = a for any $a \in G$.
- iii. (inverse) For any $a \in G$, there exists $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$.

Now, prove the following: for any $a \in G$, there exists a *unique* inverse of *a*. Even if you see the definition of a group for the first time in your lift, I believe you already know how to prove.

- 2. Show that the set of 2 by 2 matrices over real numbers form a vector space over ℝ with the "natural" choice of + and ·. You may need to check all the axioms of vector spaces. (Maybe boring, but worths to do.)
- - (b) Now, consider the same set again, but with weird additions and multiplications: for $x, y \in \mathbb{R}_+$ and $a \in \mathbb{R}$,
 - (addition) $x \oplus y = xy$
 - (multiplication) $a \odot x = x^a$

Prove that $(\mathbb{R}_+, \oplus, \odot)$ is a vector space over \mathbb{R} . What are the additive and multiplicative identities?