
Week 10, November 1

Seewoo Lee

• Theorems that you need to know:

– 8.1, 8.2, 8.3: null(𝑇 𝑘) “increases” as 𝑘 increase, but stabilizes at some
point. If null(𝑇𝑚) = null(𝑇𝑚+1), then the following spaces are all same
(null(𝑇𝑚) = null(𝑇𝑚+1) = null(𝑇𝑚+2) = null(𝑇𝑚+3) = · · · ). 8.3 tells us that
𝑚 ≤ dim𝑉 . Exercise 8A.6, 8A.7, and 8A.8 are “dual” statements of these
theorems on range(𝑇 𝑘) instead of null(𝑇 𝑘).

– 8.11: intersection of generalized eigenspaces for different eigenvalues are
always {0}.

– 8.17: nilpotent ⇒ all eigenvalues are 0. For 𝐹 = C, converse holds.
– 8.18: minimal polynomial of nilpotent operator and strictly upper-triangular

matrices.
– 8.22, especially (c): for any 𝑇 : 𝑉 → 𝑉 defined on a complex vector space 𝑉 ,

we have a decomposition of𝑉 into a direct sum of generalized eigenspaces.
Almost equvalent to 8.9.

• Combining 8.18 and 8.22 tells you that there exists a basis where the corre-
sponding matrix representation is a block-diagonal form, where each block
is upper triangular with (same) eigenvalues on the diagonals.

• (8A.1) Direct consequence of 8.2.

• (8A.6, 8A.7) These are “dual theorems” of 8.1 and 8.2.

• (8A.13) (𝑇𝑆)𝑘 = 𝑇𝑆𝑇𝑆𝑇𝑆 · · ·𝑇𝑆 = 𝑇(𝑆𝑇𝑆𝑇𝑆 · · ·𝑇)𝑆 = 𝑇(𝑆𝑇)𝑘−1𝑆.

• (8A.14) In this sense, you can think nilpotent matrices as the matrices that are
“the most non-diagonalizable” matrices.

• (8A.24) Here’s a computation for (b), where

𝑇 =


−3 9 0
−7 9 6
4 0 −6

 .
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We’ll construct a basis 𝛽 = (𝑣1, 𝑣2, 𝑣3) that gives a Jordan form of 𝑇, not just
upper-triangular (so better than the solution). Note that this is guaranteed
since 𝑇 is nilpotent and its minimal polynomial is 𝑝(𝑧) = 𝑧3, whose zeros
are all in 𝐹 for both 𝐹 = R and 𝐹 = C. First of all, once we write it as an
upper-triangular matrix, the diagonal entries are all zero since 0 is the only
eigenvalue of 𝑇. Hence it should have a form of

[𝑇]𝛽 =


0 ∗ 0
0 0 ∗
0 0 0

 .
Equivalently, the vectors 𝑣1, 𝑣2, 𝑣3 satisfy

𝑇𝑣1 = 0

𝑇𝑣2 = (∗)𝑣1

𝑇𝑣3 = (∗)𝑣2.

where ∗ could be 0 or 1 - we need to decide which one is the correct one (yes,
the answer would be both 1). First, 𝑣1 ∈ null(𝑇), and one can check that the
null space has dimension 1, spanned by

𝑣1 =


6
2
4

 .
Now, we have two possibilities, 𝑇𝑣2 = 0 or 𝑇𝑣2 = 𝑣1. The correct answer is
𝑇𝑣2 = 𝑣1, since the dimension of the null space is 1 and we cannot choose
another 𝑣2 which is linearly independent with 𝑣1. You can find that the
equation is solvable, and one of the solution is

𝑣2 =


1
1
0

 .
In fact, there are infinitely many solutions, but all of them give a vector
linearly independent with 𝑣1 (why?). By the same argument, we should have
𝑇𝑣3 = 𝑣2 and one possible solution is One such solution is

𝑣3 =


−1

3
0
2
9

 .
For (a), there is an easy solution (hint: we discussed it last week), and for (c),
the “standard” choice already works.
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• (8B.3) As a side note, two operators𝑇1 and𝑇2 are called conjugate/similar if there
exists an invertible linear map 𝑆 such that 𝑇2 = 𝑆−1𝑇1𝑆. Two linear operators
are conjugate if and only if they admit the same matrix representation with
a suitable choice of basis, i.e. [𝑇1]𝛽1 = [𝑇2]𝛽2 (try to prove this). In other
words, 𝑇1 and 𝑇2 are essentially same linear operators. This is an extremely
important concept, but unfortunately it is not emphasized in our textbook.
Conjugate linear maps share a lot of features, including eigenvalues, minimal
polynomial, characteristic polynomial, etc. The theory of Jordan form tells
you that Jordan form completely determines a linear map up to conjugation.

• (8B.11, 8B.12, 8B.13, 8B.14, 8B.21) The easiest way to construct such 𝑇 is via
Jordan block. 8B.21 is a generalization of the first four exercises. Key fact is
the following: let

𝐽𝜆,𝑛 =



𝜆 1 0 · · · 0 0
0 𝜆 1 · · · 0 0
0 0 𝜆 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 𝜆 1
0 0 0 · · · 0 𝜆


be the 𝑛 × 𝑛 Jordan block with eigenvalue 𝜆. Then its minimal polynomial is
𝑝(𝑧) = (𝑧 − 𝜆)𝑛 . Now, when 𝐹 = C, we can always find a basis 𝛽 with

[𝑇]𝛽 =



𝐽𝜆1 ,𝑛1 0 0 · · · 0
0 𝐽𝜆2 ,𝑛2 0 · · · 0
0 0 𝐽𝜆3 ,𝑛3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 𝐽𝜆𝑘 ,𝑛𝑘


where 𝜆𝑖’s are not necessarily distinct. Then the characteristic polynomial of
𝑇 is

char𝑇(𝑧) =
𝑘∏

𝑖=1
(𝑧 − 𝜆𝑖)𝑛𝑖

(again, some of 𝜆𝑖’s could be the same), and the minimal polynomial is

𝑝𝑇(𝑧) =
∏
𝜆

(𝑧 − 𝜆)𝑛𝜆 , 𝑛𝜆 =

{
max𝑖{𝑛𝑖 : 𝜆𝑖 = 𝜆} 𝜆𝑖 = 𝜆 for some 𝑖

0 𝜆𝑖 ≠ 𝜆∀𝑖
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Problems

For example, you can take

𝑇 =


0 0 0 0
0 1 1 0
0 0 1 0
0 0 0 3


for 8B.13, and

𝑇 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3


for 8B.14.

• (8B.15, 8B.16) These are nilpotent operators (why?), so you only need to
take power until you get a zero operator. Now, try to find basis whose
correponding matrix representation is a Jordan form, and compute minimal
polynomials from it.

1 Problems

• Recommended problems: 8A.3, 8A.16

• Additional problems:

1. Why Theorem 8.17 (b) is not true for 𝐹 = R?

2. (Continue from 8A.13) Let 𝑆, 𝑇 ∈ ℒ(𝑉) be nilpotent operators. Is 𝑆𝑇 also
nilpotent?

3. Let 𝑇 : C𝑛 → C𝑛 be a linear map defined as 𝑇𝑒𝑖 = 𝑒1 + 𝑒2 + · · · + 𝑒𝑖 for
1 ≤ 𝑖 ≤ 𝑛. Find eigenvalues of 𝑇 and a basis 𝛽 where [𝑇]𝛽 is a Jordan form.

4. Prove that the following matrices have the same eigenvalues, minimal
polynomials and characteristic polynomial.

2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2


,


2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2
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