
Week 12, November 15

Seewoo Lee

1 Discussion notes

• Summary of Chapter 6, 7: almost all the facts that you learned in Math 54
about the standard inner product also hold for general inner products.

• Theorems that you need to know:

– 6.12: Pythagorean theorem: for orthogonal 𝑢, 𝑣, ∥𝑢 + 𝑣∥2 = ∥𝑢∥2 + ∥𝑣∥2.

– 6.14: Cauchy–Schwarz inequality, |⟨𝑢, 𝑣⟩| ≤ ∥𝑢∥∥𝑣∥. Equality holds when
𝑢, 𝑣 are parallel, i.e. 𝑢 = 𝜆𝑣 for some 𝜆 ∈ 𝐹.

– 6.17: Triangle inequality, ∥𝑢 + 𝑣∥ ≤ ∥𝑢∥ + ∥𝑣∥. This essentially tells you
that any inner product defines a distance on the vector space (see below).

– 6.21: Parallelogram equality.

– 6.32: Gram-Schmidt: make "orthonormal" basis out of arbitrary basis.

– 6.38: Schur’s theorem, any operator on a complex inner product space has
an upper-triangular matrix with respect to some orthonormal basis.

– 6.42: Riesz representation theorem, any linear functional 𝜑 : 𝑉 → 𝐹 on
a finite dimensional inner product space is a form of inner product, i.e.
there exists 𝑣 ∈ 𝑉 such that 𝜑(𝑢) = ⟨𝑢, 𝑣⟩ for all 𝑢 ∈ 𝑉 .

• Inner product over 𝐹 = R is a non-degenerate symmetric bilinear form. When 𝐹 =

C, inner product is not symmetric, but hermitian: ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩. Especially,
it is linear on the first argument but not for the second argument: ⟨𝑢, 𝑐𝑣⟩ =

𝑐⟨𝑢, 𝑣⟩.
Given inner product, it always defines a distance on 𝑉 :

𝑑(𝑢, 𝑣) := ∥𝑢 − 𝑣∥ = ⟨𝑢 − 𝑣, 𝑢 − 𝑣⟩1/2.

(the reason is triangle inequality, Theorem 6.17). It means that you can say
how close to vectors are. For example, you can even say about how close two
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polynomials (or more generally some continuous functions) are. Note that
there are a lot of possible distances on the space of polynomials, but only few
of them arise from inner products. In fact, parallelogram equality (Theorem
6.21) tells you how to test this. (See also additional problem 3.)

• When there is an inner product on a vector space, you can always find or-
thonormal basis, not just a basis. Having orthonormal basis is good for the
following reason:

– Assume that a basis 𝛽 = (𝑣1, . . . , 𝑣𝑛) is given. To express an arbitrary
vector 𝑣 ∈ 𝑉 as a linear combination of 𝑣𝑖’s (𝑣 =

∑𝑛
𝑖=1 𝑐𝑖𝑣𝑖), one needs to

solve a system of linear equation. But when 𝛽 is an orthonormal basis, we
can easily find 𝑐𝑖 : in fact, we have

𝑣 = ⟨𝑣, 𝑣1⟩𝑣1 + ⟨𝑣, 𝑣2⟩𝑣2 + · · · + ⟨𝑣, 𝑣𝑛⟩𝑣𝑛 .

(If you are a CS major, think about computational complexity for these
two approaches to find coordinates.)

– Now, consider the following situation: let 𝑉 be a (possibly infinite dimen-
sional) vector space and 𝑊 ⊂ 𝑉 be a subspace with a orthonormal basis
𝛽 = (𝑤1, . . . , 𝑤𝑚). We can ask the following question: what is the vec-
tor 𝑤∗ ∈ 𝑊 that is closest to 𝑣 among the vectors in 𝑤 (in other words,
∥𝑣 −𝑤∗∥ ≤ ∥𝑣 −𝑤∥ for all 𝑤 ∈ 𝑊)? Since 𝑤 ∈ 𝑊 , we can write it uniquely
as 𝑤 =

∑𝑛
𝑖=1 𝑐𝑖𝑤𝑖 , and the goal is to find the (optimal) coefficients 𝑐𝑖’s.

Using the fact that 𝛽 is an orthonormal basis, we get a very nice answer
for this:

𝑤∗ = ⟨𝑣, 𝑤1⟩𝑤1 + ⟨𝑣, 𝑤2⟩𝑤2 + · · · + ⟨𝑣, 𝑤𝑛⟩𝑤𝑛 .

Why this matters? If we consider the case when𝑉 is a space of continuous
functions on some interval [𝑎, 𝑏] and𝑊 is a subspace of special functions (for
example, polynomial or trigonometric functions), than the above question
is equivalent to find a function 𝑔(𝑥) ∈ 𝑊 that gives a best approximation
of given 𝑓 (𝑥) ∈ 𝑉 , i.e. minimizing the distance

∥ 𝑓 − 𝑔∥ =

(∫ 𝑏

𝑎

( 𝑓 (𝑥) − 𝑔(𝑥))2d𝑥
)1/2

.

When we have an orthonormal basis (𝑔1, . . . , 𝑔𝑛) of 𝑊 , then the answer is
given by the previous formula, which is 𝑓 ≈ 𝑔∗ =

∑𝑛
𝑖=1 𝑐𝑖𝑔𝑖 where

𝑐𝑖 = ⟨ 𝑓 , 𝑔𝑖⟩ =
∫ 𝑏

𝑎

𝑓 (𝑥)𝑔𝑖(𝑥)d𝑥.
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For example, Exercise 6B.4 tells you that, when [𝑎, 𝑏] = [−𝜋,𝜋], the
trigonometric functions

1√
2𝜋

,
cos 𝑥√

𝜋
,
cos 2𝑥√

𝜋
, · · · , sin 𝑥√

𝜋
,
sin 2𝑥√

𝜋
, . . .

form an orthonormal basis of the space of trigonometric functions (of
the form

∑𝑛
𝑖=0 𝑎𝑖 cos(𝑖𝑥) + ∑𝑛

𝑗=1 𝑏 𝑗 sin(𝑗𝑥), and one can use it to approxi-
mate a given continuous function with trigonometric functions on [−𝜋,𝜋].
There’s a whole theory for such approximations, which is called Fourier
theory. One can also consider the case when𝑊 = 𝒫𝑛(R) - see the additional
problem 2.

• (6A.5, 6A.21, 6A.26) Using the basic but important identity: ∥𝑢 + 𝑣∥2 =

⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩ = ∥𝑢∥2 + ⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑢⟩ + ∥𝑣∥2.

• (6A.6, 6A.14) Cauchy–Schwarz applications. Caution: when you are dealing
with complex vector space, we have ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩, but not ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩.

• (6B.8, 6B.11) 6B.8 is very important! You can do 6B.11 manually by setting
𝑝(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and 𝑞(𝑥) = 𝑑𝑥2 + 𝑒𝑥 + 𝑓 , and find 𝑑, 𝑒 , 𝑓 such that the
equation holds for any 𝑎, 𝑏, 𝑐. But I strongly recommend you to use the basis
you found in 6B.8. (In fact, I recommend you to do in both ways, and realize
that using 6B.8 is much simpler.)

• (6B.18) Proof uses Riesz representation theorem. But also think about its
geometric meaning: for a fixed𝑢𝑖 , how the set of vectors 𝑣 satisfying ⟨𝑣, 𝑢𝑖⟩ = 1
looks like? Try when dim𝑉 = 𝑚 = 2.

2 Problems

• Recommended problems: 6A.5, 6A.14, 6B.3, 6B.4, 6B.8 (must!!), 6B.11, 6B.19

• Additional problems:

1. (More general inner product) Let 𝑤 : [−1, 1] → R be a continous function
which is strictly positive on [−1, 1]. Define a map ⟨−,−⟩𝑤 : 𝒫(R) ×𝒫(R) →
R via

⟨𝑝, 𝑞⟩𝑤 :=
∫ 1

−1
𝑝(𝑥)𝑞(𝑥)𝑤(𝑥)d𝑥.

Prove that ⟨−,−⟩𝑤 is an inner product.
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2. (Legendre polynomial)

(a) Find monic polynomials 𝑃0, 𝑃1, 𝑃2, 𝑃3 such that

• deg𝑃𝑛(𝑥) = 𝑛,
• 𝑃𝑛(1) = 1,
• they form an orthogonal basis (not necessarily orthonormal) of

𝒫3(R) under the inner product

⟨𝑝, 𝑞⟩ :=
∫ 1

−1
𝑝(𝑥)𝑞(𝑥)d𝑥.

Answers can be found here.

(b) Using the polynomials above, find a degree ≤ 3 polynomial 𝑝(𝑥) that
minimizes

∥𝑝(𝑥) − sin(𝜋𝑥)∥ :=
(∫ 1

−1
(𝑝(𝑥) − sin(𝜋𝑥))2

) 1
2

d𝑥.

3. (Distance function that does not come from inner products) Consider the
function 𝑑 : 𝒫𝑛(R) × 𝒫𝑛(R) → R defined as

𝑑(𝑝, 𝑞) :=
∫ 1

−1
|𝑝(𝑥) − 𝑞(𝑥)|d𝑥.

(a) Prove that the above 𝑑 satisfies the triangle inequality: for any 𝑝, 𝑞, 𝑟 ∈
𝒫𝑛(R), 𝑑(𝑝, 𝑞) + 𝑑(𝑞, 𝑟) ≥ 𝑑(𝑝, 𝑟).

(b) Prove that there is no inner product ⟨−,−⟩ on 𝒫𝑛(R) that gives ⟨𝑝 −
𝑞, 𝑝 − 𝑞⟩1/2 = 𝑑(𝑝 − 𝑞) for all 𝑝, 𝑞. (Hint: proof by contradiction, and
use the parallelogram identity).
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