
Week 16, December 13

Seewoo Lee

1 Comments on the mock final

There are not complete answers to the questions, but rather comments and
additional exercises that you can try. Especially, you may need to write more
formally in the actual exam.

1. First of all, 𝐴 is a hermitian matrix, i.e. 𝐴
⊺
= 𝐴∗ = 𝐴. In other words,

𝐴 defines a self-adjoint operator. In that case, it is guaranteed that the
eigenvectors for different eigenvalues are orthogonal (try to prove this if
you haven’t, you can find the answer here which uses Problem 5 below).
The eigenvalues are 0 and 3, so they are distinct and the corresponding
eigenvectors are automatically orthogonal (but you still need to normalize).
Note that (standard) inner product on C2 is defined as〈(

𝑥1

𝑦1

)
,

(
𝑥2

𝑦2

)〉
= 𝑥1𝑥2 + 𝑦1𝑦2,

where there is a complex conjugation in the second vector (if we don’t
include this, then it does not define an inner product.

• Assume that 𝑇 is a normal operator and 𝑣, 𝑤 are eigenvectors of two
different eigenvalues 𝜆, 𝜇. Show that 𝑣, 𝑤 are orthogonal.

• On C2, check that the naive inner product〈(
𝑥1

𝑥2

)
,

(
𝑦1

𝑦2

)〉
:= 𝑥1𝑦1 + 𝑥2𝑦2

does not define an inner product. Which properties fail?

2. This Exercise 5B.3, but also asking for eigenvalues and minimal polyno-
mials. Before you learned about Jordan forms, you can find the minimal
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polynomial by 1) knowing that there are two eigenvalues 𝜆 = 0, 𝑛, so the
minimal polynomial would have a form of 𝑝(𝑧) = 𝑧𝑎(𝑧 − 𝑛)𝑏 with 𝑎, 𝑏 ≥ 1,
and 2) check that 𝑇(𝑇 − 𝑛𝐼) = 0, so the minimal possible 𝑎, 𝑏 (𝑎 = 𝑏 = 1)
actually gives the minimal polynomial (you don’t need to go higher expo-
nent). For now, you learned eigenvalues/vectors, and one can check that
dim𝐸(0, 𝑇) = 𝑛 − 1 and dim𝐸(𝑛, 𝑇) = 1, so dim𝐸(0, 𝑇) + dim𝐸(𝑛, 𝑇) = 𝑛

and 𝑇 is diagonalizable. This gives you an another way to find a minimal
polynomial.

• Check that 𝐴 is self-adjoint, so is normal. By the theory, eigenvectors
for distinct eigenvalues should be orthogonal: check this, too.

3. Remind that there are several things that you need to check for being an
inner product. The answer could be simpler than you think: since the
interval is symmetric, any odd function integrates to zero. Now choose
the first vector as a constant polynomial, and the second one as a odd
polynomial 𝑝(𝑡) so that ⟨1, 𝑝(𝑡)⟩ = 0, where you can simply choose as
𝑝(𝑡). Of course, you need to normalize these with respect to the norm

∥ 𝑓 (𝑡)∥ =

(∫ 2
−2 𝑓 (𝑡)2d𝑡

)1/2
.

• Try to do the same question with

⟨ 𝑓 (𝑡), 𝑔(𝑡)⟩ =
∫ 2

−2
𝑓 (𝑡)𝑔(𝑡)(𝑡2 + 1)d𝑡.

In fact, you can replace 𝑡2 + 1 with any other nonnegative nonzero
continuous function 𝑤(𝑡) on [−2, 2].

4. Finding Jordan form is explained a lot, so let me skip the details. The matrix
𝑄 is nothing but the basis of (generalized) eigenvectors. More precisely, if
you write your Jordan form as

𝐽 =
©«
1 0 0
0 2 1
0 0 2

ª®®¬
then the corrsponding 𝑄 would be

𝑄 =

(
𝑣1 𝑣2 𝑤2

)
where 𝑣1, 𝑣2 are genuine eigenvectors of 𝜆 = 1, 2 respectively, and 𝑤2 is a
generalized eigenvector for 𝜆 = 2 (i.e. (𝑇 − 2𝐼)𝑤2 = 𝑣2).
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• Check that this actually satisfy the desired relation𝐴 = 𝑄𝐽𝑄−1 ⇔ 𝐴𝑄 =

𝑄𝐽.

• What happens if the characteristic polynomial is (𝜆 − 2)3? Describe all
the possible scenario.

5. Using 𝑇𝑣 = 𝜆𝑣, you need to prove 𝑇∗𝑣 = 𝜆𝑣. One way is to considering
∥𝑇∗𝑣 − 𝜆𝑣∥2 and prove that it is zero, by writing it as (self-)inner product
and use normality. Especially, we have ∥𝑇𝑤∥ = ∥𝑇∗𝑤∥ for normal 𝑇 and
any 𝑤 ∈ 𝑉 (Theorem 7.20), and this will be useful.

More direct way to observe the following: if (𝑇 −𝜆𝐼)∗ = 𝑇∗ −𝜆𝐼, and 𝑇 −𝜆𝐼

is normal if 𝑇 is. Then you can apply the theorem to the operator 𝑇 − 𝜆𝐼.

• Prove Theorem 7.20 yourself if you haven’t done it.

• For a normal operator𝑇 ∈ ℒ(𝑉) and𝜆 ∈ C, prove that (𝑇−𝜆𝐼)∗ = 𝑇∗−𝜆𝐼
and 𝑇 − 𝜆𝐼 is also a normal operator.

• Find an operator 𝑇 which is not a normal operator and fails to satisfy
the conclusion of the problem.

6. This is a "dual" theorem of Theorem 8.2 of the book. Both can be proven in a
similar way, but also these two theorems (for null and range) are equivalent
by the fundamental theorem of linear algebra.

• Assume that null(𝑇𝑚) = null(𝑇𝑚+1) for some 𝑚. Prove that range(𝑇𝑚) =
range(𝑇𝑚+1).

7. If 𝑇 is diagonalizable, it means that 𝐺(𝜆, 𝑇) = 𝐸(𝜆, 𝑇) for all 𝜆. In other
words, any vector 𝑣 satisfying (𝑇 − 𝜆𝐼)𝑁𝑣 = 0 for some 𝑁 ≥ 1 must satisfy
(𝑇 − 𝜆𝐼)𝑣 = 0, which proves the equality of null spaces.

For the other direction, assume 𝑇 is not diagonalizable. We still have a
Jordan form, hence we have a generalized eigenvector 𝑤 ∈ 𝑉 where 𝑣 =

(𝑇−𝜆𝐼)𝑤 is a genuine eigenvector (consider the "second" vector in a chain).
Then (𝑇 − 𝜆𝐼)𝑤 = 𝑣 ≠ 0 but (𝑇 − 𝜆𝐼)2𝑤 = (𝑇 − 𝜆𝐼)𝑣 = 0, so 𝑤 ∈ null((𝑇 −
𝜆𝐼)2) − null(𝑇 − 𝜆𝐼).

8. There are basically two proofs that you usually see, one in the textbook
and one uses "dual basis". Since the textbook proof can be found in the
textbook, let me explain more about the "dual basis" proof.

For 𝑚 = 1, observe that 𝑉 (1) = 𝑉 ′, the dual space, and the statement
reduces to dim(𝑉 ′) = dim(𝑉), and we proved this by constructing a dual
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basis: for a basis 𝛽 = (𝑣1, . . . , 𝑣𝑛) of 𝑉 , the dual basis 𝛽′ = (𝜑1, . . . , 𝜑𝑛)
defined as 𝜑𝑖(𝑣 𝑗) = 𝛿𝑖 𝑗 is indeed a basis, where you need to prove linear
independence and spanning property.

For general 𝑚, the "dual basis" will be the following. For each 𝑚-tuple
(𝑖1, . . . , 𝑖𝑚) of integers from 1 to 𝑛, define 𝜑𝑖1 ,...,𝑖𝑚 as

𝜑𝑖1 ,...,𝑖𝑚 (𝑣 𝑗1 , . . . , 𝑣 𝑗𝑚 ) =
{

1 (𝑗1, . . . , 𝑗𝑚) = (𝑖1, . . . , 𝑖𝑚)
0 otherwise

.

and linearly extend to 𝑉 × · · · × 𝑉 . One thing to note is that any input
(𝑤1, . . . , 𝑤𝑚) can be written in terms of the basis vectors in 𝛽, and 𝑚-
linearity uniquely determines 𝜑𝑖1 ,...,𝑖𝑚 (𝑤1, . . . , 𝑤𝑚) as

𝜑𝑖1 ,...,𝑖𝑚 (𝑤1, . . . , 𝑤𝑚) = 𝜑𝑖1 ,...,𝑖𝑚

(
𝑛∑

𝑘=1
𝑎1,𝑘𝑣𝑘 , . . . ,

𝑛∑
𝑘=1

𝑎𝑚,𝑘𝑣𝑘

)
=

𝑛∑
𝑘1=1

· · ·
𝑛∑

𝑘𝑚=1
𝑎1,𝑘1 · · · 𝑎𝑚,𝑘𝑚𝜑𝑖1 ,...,𝑖𝑚 (𝑣𝑘1 , . . . , 𝑣𝑘𝑚 )

= 𝑎1,𝑖1 · · · 𝑎𝑚,𝑖𝑚 .

Now, goal is to prove the same thing: the vectors (𝜑𝑖1 ,...,𝑖𝑚 )1≤𝑖1 ,...,𝑖𝑚≤𝑛 are
linearly independent and span 𝑉 (𝑚). Once we know this, the dimension is
equal to the number of 𝑚-tuples (𝑖1, . . . , 𝑖𝑚), which is 𝑛𝑚 . To prove linear
independence, assume ∑

𝑘1 ,...,𝑘𝑚

𝑐𝑘1 ,...,𝑘𝑚𝜑𝑘1 ,...,𝑘𝑚 = 0

i.e. it is a zero 𝑚-linear map. Then we get a zero vector for any input,
especially for (𝑣𝑖1 , . . . , 𝑣𝑖𝑚 ), the equation reduces to 𝑐𝑖1 ,...,𝑖𝑚 = 0. Since this
is true for any tuples, we get all the coefficients to be zero and 𝜑𝑖1 ,...,𝑖𝑚 are
linearly independent. Proof for the spanning part is similar to 𝑚 = 1 case:
you will eventually show that for any 𝜑 ∈ 𝑉 (𝑚),

𝜑 =

∑
𝑘1 ,...,𝑘𝑚

𝜑(𝑣𝑘1 , . . . , 𝑣𝑘𝑚 )𝜑𝑘1 ,...,𝑘𝑚 .

• Complete the proof.

• Let 𝑓 , 𝑔 ∈ 𝑉 (𝑚) and assume that 𝑓 (𝑣𝑖1 , . . . , 𝑣𝑖𝑚 ) = 𝑔(𝑣𝑖1 , . . . , 𝑣𝑖𝑚 ) for any
(𝑖1, . . . , 𝑖𝑚). Prove 𝑓 = 𝑔.
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