Week 8, October 18

Seewoo Lee

1 Discussion notes

- Based on the midterm course evaluation and the exam itself, I decided to
 focus on the homework problems. More precisely, concepts will be explained *through* the problems. Please *read* the homework problems before come to the
 following discussions better if you have some ideas for the problems.
- Theorems that you need to know:
 - 5.7: equivalence conditions for being an eigenvalue
 - 5.11: eigenvectors for distinct eigenvalues are linearly independent
 - 5.22: existence and uniqueness of a minimal polynomial, with degree $\leq \dim V$
 - 5.27: eigenvalues are zeros of the minimal polynomial
- (5B.1, 5B.4) On eigenvalues and eigenvectors. Second one is a generalization of the first one over C (over R, ⇐ still holds, but ⇒ may not). Here's a fancy (constructible) solution of 5B.1 (⇒): assume 9 is an eigenvalue of T² and v be an eigenvector, so T²v = 9v. If Tv = 3v, then we're done. Otherwise, define w = Tv 3v, then w ≠ 0 and check that Tw = T²v 3Tv = 9v 3Tv = (-3)(Tv 3v) = (-3)w, and we obtain an eigenvector for (-3).
- (5B.3, 5B.8) How to compute the minimal polynomial. For 5B.3, it is easier to find the eigenvalues (λ = 0, n) first and to check if the "minimal candidate" p(x) = x(x − n) works or not (it works!). For 5B.8, it does not have eigenvalues in ℝ, hence you may need to compute it directly, by seeking the relations between *I*, *T*, *T*² (the degree is at most two, since it is a 2 by 2 matrix).
- (5B.11) Cayley–Hamilton theorem. This problem tell you how to compute a minimal polynomial of a linear operator defined on a vector space of dimension 2. There's a version for *n* by *n* matrices: see the additional problem below.

Problems

• Minimal polynomial of

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

is $(x-1)^2 = x^2 - 2x + 1$.

• (5B.6, Real vs Complex) Linear operators on a real vector space may not have an eigenvalue. However, linear operator on a complex vector space always have an eigenvalue (by the fundamental theorem of algebra, 4.12 and 4.13).

2 Problems

- Recommended problems: 5A.10, 5A.24, 5B.20 (not in HW, but still good one)
- Additional problems:
 - 1. Find a minimal polynomial of

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- 2. (Problem 5B.8, geometrically)
 - (a) Let $T = T_{\theta} \in \mathcal{L}(\mathbb{R}^2)$ be the operator of clockwise rotation by $\theta \neq 0, \pi$, then the minimal polynomial of T is $x^2 2(\cos \theta)x + 1$. Prove this by expressing T^2v as a linear combination of v and Tv. (It might be easier to express Tv as a combination of v and T^2v)
 - (b) Explain why $T_{2\theta} = T_{\theta}^2$. Using this, prove the double angle formula $\cos 2\theta = 2\cos^2 -1$ and $\sin 2\theta = 2\sin\theta\cos\theta$.
- 3. (Cayley–Hamilton for 3 by 3 matrices) In general, it is known that an *n* by *n* matrix *A* satisfy the equation $c_A(A) = 0$, where $c_A(x) := \det(xI A)$ is the *characteristic polynomial* (which we'll learn later). The problem 5B.11 (a) is to prove this for n = 2. Now, do this for n = 3. (Caution: this takes a lot of time!)