
Week 9, October 25

Seewoo Lee

1 Discussion notes

• Theorems that you need to know:

– Theorem 5.41: Eigenvalues of an upper-triangular matrix are diagonal
entries.

– Theorem 5.44: A linear map can be written as an upper-triangular matrix
if and only if minimal polynomial factors completely (as linear factors)
over a base field F.

– Theorem 5.47 (Corollary of 5.44): When F = C, every linear map can be
represented as an upper-triangular matrix.

– Theorem 5.55: Equivalent conditions for diagonalizability, in terms of
eigenspaces. The main content of the theorem is whether eigenspaces
span whole 𝑉 or not, but not about their intersections - intersection of
distinct eigenspaces are always zero, independent of the diagonalizability
of 𝑇.

– Theorem 5.58: A linear map is diagonalizable if it has (dim𝑉)-many
distinct eigenvalues

– Theorem 5.62: A linear map is diagonalizable if and only if the minimal
polynomial has no repeated roots.

– Theorem 5.76: Simultaneous diagonalizability ⇔ commutativity

– Theorem 5.80: Simultaneous triangulizability ⇔ commutativity

I didn’t have enough time to discuss 5E (the last two theorems). I believe
you can read it yourself, but let me know if you have any questions about the
section.

• The latest quiz question Q2 is a really nice example on triangulizability and
diagonalizability. Although we consider it over a complex vector space, we
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Discussion notes

know that the minimal polynomial is 𝑝(𝑧) = 𝑧𝑛−1(𝑧 − 1) and it even factors
linearly over R. Hence it is triangulizable both over R and C. The matrix
representation with respect to the basis (𝑒1, . . . , 𝑒𝑛) is not upper-triangular:

©­­­­­­­«

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 1

ª®®®®®®®¬
rather it is lower-triangular. But Theorem 5.47 tell us that we should be able to
write it as an upper-triangular matrix with respect to some other basis, and
try to find a corresponding basis. In fact, we can choose 𝛽 = (𝑒𝑛 , 𝑒𝑛−1, . . . , 𝑒1)
so that we get an upper-triangular matrix. This is related to the exercises
5C.10 and 5C.11. Especially, we have the following identity in a really bad
notation:

[𝑇] 𝛽=

[𝑇]𝛽

Here 𝛽= (𝑣𝑛 , . . . , 𝑣1)when 𝛽 = (𝑣1, . . . , 𝑣𝑛), and the right hand side is a matrix
obtained by “rotating” a matrix [𝑇]𝛽 180 degree. (NEVER use this notation
in an exam!) Also, this is the reason why we only care about upper-triangular
matrices: upper-triangulizability and lower-triangulizability is equivalent.

For diagonalizability, it is diagonalizable if and only if 𝑛 = 2. This can be
seen from Theorem 5.55 or 5.62. In view of Theorem 5.55, one can compute
the eigenspaces for 𝜆 = 0, 1, which are

𝐸(0, 𝑇) = span(𝑒𝑛−1 − 𝑒𝑛), 𝐸(1, 𝑇) = span(𝑒𝑛)

which are both 1-dimensional. Hence 𝑇 is diagonalizable if and only if
𝑛 = dim𝑉 = dim𝐸(0, 𝑇) + dim𝐸(1, 𝑇) = 2. In view of Theorem 5.62, the
minimal polynomial 𝑝(𝑧) = 𝑧𝑛−1(𝑧 − 1) has no repeated roots if and only if
𝑛 − 1 = 1 ⇔ 𝑛 = 2, getting the same answer.

• (5C.2, 5C.3) Try small matrices first (𝑛 = 3), and write a proof for general 𝑛.
This is a good exercise for writing a proof with Σ.

• (5C.8) Triangulizability highly depends on the base field F.

• (5C.9) You should be able to answer this without using a pen!
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Problems

• (5D.1, 5D.11, 5D.14a) Life tip: to find a counter example related to diagonal-
ization, first consider matrices of the form(

𝑎 1
0 𝑎

)
.

For example, for 5D.11 consider a matrix containing the above matrix as a
submatrix.

• (5D.3, 5D.4, 5D.5) Use Theorem 5.55. For 5D.3, range(𝑇) has to be the same
as "some" direct sum of eigenspaces.

• (5D.21) One usual application of diagonalization: we can easily compute the
power of a matrix. This problem also appears in the cover of the book!

• (5E.3, 5E.5) Use definition.

2 Problems

• Recommended problems: 5C.11, 5D.14 (for (b), use 5D.15)

• Additional problems:

1. (Preview of Jordan canonical form) The matrix

𝐽 =

(
1 1
0 1

)
is not diagonalizable. But, you can still compute 𝐽𝑛 - what is it? Try 𝐽2, 𝐽3, ...

and guess the answer.

Using the above result, compute(
0 1
−1 2

)2024

.

Hint: Check (
0 1
−1 2

)
=

(
1 1
1 2

) (
1 1
0 1

) (
1 1
1 2

)−1

.
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